【題目】在平面直角坐標(biāo)系中,圓為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線l的極坐標(biāo)方程為

分別求圓的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

設(shè)直線交曲線兩點(diǎn),曲線兩點(diǎn),求的長(zhǎng);

為曲線上任意一點(diǎn),求的取值范圍.

【答案】(1),;(2);(3).

【解析】

消去參數(shù)得到普通方程,利用這個(gè)是可得到的直角坐標(biāo),直接利用轉(zhuǎn)換關(guān)系對(duì)極坐標(biāo)方程進(jìn)行轉(zhuǎn)換可得到曲線的極坐標(biāo)方程;利用方程組和兩點(diǎn)間的距離公式分別求出,相減求出結(jié)果.利用向量的數(shù)量積和三角函數(shù)關(guān)系式的恒等變換及正弦型函數(shù)的性質(zhì)可求出結(jié)果.

為參數(shù),

轉(zhuǎn)換為直角坐標(biāo)方程為:

,利用

轉(zhuǎn)換為極坐標(biāo)方程為:,即

曲線的極坐標(biāo)方程為,

轉(zhuǎn)化為,

利用整理得:

直線l的極坐標(biāo)方程為

轉(zhuǎn)換為直角坐標(biāo)方程為:,

由于直線交曲線兩點(diǎn),

則:,

解得:,

所以:,

同理:直線交曲線兩點(diǎn),

則:,

解得:

所以:,

所以:

由于,

P為曲線上任意一點(diǎn),,

則:,

所以

的范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中是錯(cuò)誤命題的個(gè)數(shù)有(  )

(1)若命題p為假命題,命題為假命題,則命題“”為假命題;

(2)命題“若,則”的否命題為“若,則”;

(3)對(duì)立事件一定是互斥事件;

(4)為兩個(gè)事件,則P(A∪B)=P(A)+P(B);

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足an+2=an+1﹣an , 且a1=2,a2=3,Sn為數(shù)列{an}的前n項(xiàng)和,則S2016的值為(
A.0
B.2
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.

(1)證明:平面PQC⊥平面DCQ;

(2)求直線DQ與面PQC成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知m0,p(x2)(x6)0,q2mx2m.

(1)pq成立的必要不充分條件,求實(shí)數(shù)m的取值范圍;

(2) 成立的充分不必要條件求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是半圓的直徑,,是將半圓圓周四等分的三個(gè)分點(diǎn)

(1)從這5個(gè)點(diǎn)中任取3個(gè)點(diǎn),求這3個(gè)點(diǎn)組成直角三角形的概率;

(2)在半圓內(nèi)任取一點(diǎn),求的面積大于的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=1﹣ ,g(x)=ln(ax2﹣3x+1),若對(duì)任意的x1∈[0,+∞),都存在x2∈R,使得f(x1)=g(x2)成立,則實(shí)數(shù)a的最大值為(
A.2
B.
C.4
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=(1﹣ax)ln(x+1)﹣bx,其中a和b是實(shí)數(shù),曲線y=f(x)恒與x軸相切于坐標(biāo)原點(diǎn).
(1)求常數(shù)b的值;
(2)當(dāng)a=1時(shí),討論函數(shù)f(x)的單調(diào)性;
(3)當(dāng)0≤x≤1時(shí)關(guān)于x的不等式f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集為[﹣1,1].
(1)求m的值;
(2)若a,b,c∈R,且 =m,求證:a+2b+3c≥9.

查看答案和解析>>

同步練習(xí)冊(cè)答案