【題目】為計(jì)算, 設(shè)計(jì)了如圖所示的程序框圖,則空白框中應(yīng)填入( )

A. B. C. D.

【答案】A

【解析】

根據(jù)程序框圖輸出的S的值即可得到空白框中應(yīng)填入的內(nèi)容.

由程序框圖的運(yùn)行,可得:S0,i0

滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a1,S1,i1

滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a2×(﹣2),S1+2×(﹣2),i2

滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a3×(﹣22S1+2×(﹣2+3×(﹣22i3

觀察規(guī)律可知:滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a99×(﹣299,S1+2×(﹣2+3×(﹣22++100×(﹣299,i100,此時(shí),應(yīng)該不滿足判斷框內(nèi)的條件,退出循環(huán),輸出S的值,所以判斷框中的條件應(yīng)是i100

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體中,E是線段的中點(diǎn),,,.

1)證明:

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著食品安全問題逐漸引起人們的重視,有機(jī)、健康的高端綠色蔬菜越來越受到消費(fèi)者的歡迎,同時(shí)生產(chǎn)—運(yùn)輸—銷售一體化的直銷供應(yīng)模式,不僅減少了成本,而且減去了蔬菜的二次污染等問題.

(1)在有機(jī)蔬菜的種植過程中,有機(jī)肥料使用是必不可少的.根據(jù)統(tǒng)計(jì)某種有機(jī)蔬菜的產(chǎn)量與有機(jī)肥料的用量有關(guān)系,每個(gè)有機(jī)蔬菜大棚產(chǎn)量的增加量(百斤)與使用堆漚肥料(千克)之間對應(yīng)數(shù)據(jù)如下表

使用堆漚肥料(千克)

2

4

5

6

8

產(chǎn)量的增加量(百斤)

3

4

4

4

5

依據(jù)表中的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;并根據(jù)所求線性回歸方程,估計(jì)如果每個(gè)有機(jī)蔬菜大棚使用堆漚肥料10千克,則每個(gè)有機(jī)蔬菜大棚產(chǎn)量增加量是多少百斤?

(2)某大棚蔬菜種植基地將采摘的有機(jī)蔬菜以每份三斤稱重并保鮮分裝,以每份10元的價(jià)格銷售到生鮮超市.“樂購”生鮮超市以每份15元的價(jià)格賣給顧客,如果當(dāng)天前8小時(shí)賣不完,則超市通過促銷以每份5元的價(jià)格賣給顧客(根據(jù)經(jīng)驗(yàn),當(dāng)天能夠把剩余的有機(jī)蔬菜都低價(jià)處理完畢,且處理完畢后,當(dāng)天不再進(jìn)貨).該生鮮超市統(tǒng)計(jì)了100天有機(jī)蔬菜在每天的前8小時(shí)內(nèi)的銷售量(單位:份),制成如下表格(注:,且);

前8小時(shí)內(nèi)的銷售量(單位:份)

15

16

17

18

19

20

21

頻數(shù)

10

x

16

6

15

13

y

若以100天記錄的頻率作為每日前8小時(shí)銷售量發(fā)生的概率,該生鮮超市當(dāng)天銷售有機(jī)蔬菜利潤的期望值為決策依據(jù),當(dāng)購進(jìn)17份比購進(jìn)18份的利潤的期望值大時(shí),求的取值范圍.

附:回歸直線方程為,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)上有最大值,求實(shí)數(shù)的值;

(2)若方程上有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】針對時(shí)下的抖音熱,某校團(tuán)委對學(xué)生性別和喜歡抖音是否有關(guān)作了一次調(diào)查,其中被調(diào)查的男女生人數(shù)相同,男生喜歡抖音的人數(shù)占男生人數(shù)的,女生喜歡抖音的人數(shù)占女生人數(shù),若有95%的把握認(rèn)為是否喜歡抖音和性別有關(guān)則調(diào)查人數(shù)中男生可能有( )人

附表:

0.050

0.010

k

3.841

6.635

附:

A.2545B.45C.4560D.7560

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,焦距為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若一直線與橢圓相交于兩點(diǎn)(、不是橢圓的頂點(diǎn)),以為直徑的圓過橢圓的上頂點(diǎn),求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高二某班共有45人,學(xué)號(hào)依次為1、2、3、45,現(xiàn)按學(xué)號(hào)用系統(tǒng)抽樣的辦法抽取一個(gè)容量為5的樣本,已知學(xué)號(hào)為6、2433的同學(xué)在樣本中,那么樣本中還有兩個(gè)同學(xué)的學(xué)號(hào)應(yīng)為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面 平面,, .

(1)證明

(2)設(shè)點(diǎn)在線段上,且,若的面積為,求四棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,過點(diǎn)的直線交拋物線于、兩點(diǎn),設(shè)為坐標(biāo)原點(diǎn),點(diǎn).

(1)求的值;

(2)若,,的面積成等比數(shù)列,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案