【題目】如圖,已知四棱錐 中,底面 是邊長為1的正方形,側(cè)棱 底面 ,且 , 是側(cè)棱 上的動點.

(1)求四棱錐 的表面積;
(2)是否在棱 上存在一點 ,使得 平面 ;若存在,指出點 的位置,并證明;若不存在,請說明理由.

【答案】
(1)解:四棱錐 的底面是邊長為1的正方形,側(cè)棱 底面 ,且

, ,
平面 ,∴
.同理,

(2)解:當 的中點時, 平面

證明:連接 于點 ,連接 ,則在三角形 中, 、 分別為 、 的中點,

又∵ 平面 , 平面
平面
【解析】(1)首先根據(jù)條件確定四棱錐個側(cè)面圖形的形狀,再根據(jù)直角三角形的面積公式以及正方形面積公式代入數(shù)值求出表面積。(2)根據(jù)題意作出輔助線,由三角形的中位線的性質(zhì)得到O E / / A P,再根據(jù)線面平行的判定定理即可得出結(jié)論即可。
【考點精析】解答此題的關鍵在于理解直線與平面平行的性質(zhì)的相關知識,掌握一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行;簡記為:線面平行則線線平行.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|(x+2m)(x﹣m+4)<0},其中m∈R,集合B={x| >0}.
(1)若BA,求實數(shù)m的取值范圍;
(2)若A∩B=,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F是拋物線x2=4y的焦點,P是拋物線上的一個動點,且A的坐標為(0,﹣1),則 的最小值等于

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=lnx﹣ax+1,其中a為常實數(shù).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當a=1時,求證:f(x)≤0;
(3)當n≥2,且n∈N*時,求證: <2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E的右焦點與拋物線y2=4x的焦點重合,點M 在橢圓E上. (Ⅰ)求橢圓E的標準方程;
(Ⅱ)設P(﹣4,0),直線y=kx+1與橢圓E交于A,B兩點,若∠APO=∠BPO,(其中O為坐標原點),
求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線C1的方程為(x﹣2)2+y2=4.以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2,射線C3的極坐標方程為
(1)將曲線C1的直角坐標方程化為極坐標方程;
(2)若射線C3與曲線C1、C2分別交于點A、B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ax+1(a∈R).
(1)若函數(shù)f(x)的圖象在x=1處的切線l垂直于直線y=x,求實數(shù)a的值及直線l的方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若x>1,求證:lnx<x﹣1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:如果函數(shù)f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)滿足 , ,則稱函數(shù)f(x)是[a,b]上的“雙中值函數(shù)”.已知函數(shù)f(x)=x3﹣x2+a是[0,a]上的“雙中值函數(shù)”,則實數(shù)a的取值范圍是(
A.
B.(
C.( ,1)
D.( ,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓 =1(a>b>0),F(xiàn)1、F2分別為橢 圓的左、右焦點,A為橢圓的上頂點,直線AF2交橢圓于另一點B、

(1)若∠F1AB=90°,求橢圓的離心率;
(2)若 =2 , = ,求橢圓的方程.

查看答案和解析>>

同步練習冊答案