【題目】函數(shù)f(x)=ax3+bx2+cx+d是實(shí)數(shù)集R上的偶函數(shù),并且f(x)<0的解為(﹣2,2),則 的值為 .
【答案】﹣4
【解析】解:∵f(x)=ax3+bx2+cx+d是實(shí)數(shù)集R上的偶函數(shù),
∴f(﹣x)=f(x),
即﹣ax3+bx2﹣cx+d=ax3+bx2+cx+d,
即﹣ax3﹣cx=ax3+cx,
則﹣a=a且﹣c=c,解得a=c=0,
則f(x)=bx2+d,
∵f(x)<0的解為(﹣2,2),
∴bx2+d<0的解為(﹣2,2),
即2,﹣2是方程bx2+d=0得兩個(gè)根,且b>0,
則4b+d=0,
則d=﹣4b,即 =﹣4,
所以答案是:﹣4.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的奇偶性,需要了解偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列{an}滿(mǎn)足a2+a3+a4=28,且a3+2是a2 , a4的等差中項(xiàng). (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=anlog2an , 其前n項(xiàng)和為Sn , 若(n﹣1)2≤m(Sn﹣n﹣1)對(duì)于n≥2恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)f(x)=cos(x+φ)的圖象上每點(diǎn)的橫坐標(biāo)縮短為原來(lái)的 倍(縱坐標(biāo)不變),再將所得的圖象向左平移 個(gè)單位長(zhǎng)度后得到的圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng),則下列直線(xiàn)中是函數(shù)f(x)圖象的對(duì)稱(chēng)軸的是( )
A.x=﹣
B.x=
C.x=﹣
D.x=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+bx+c(b,c∈R),并設(shè) ,
(1)若F(x)圖像在x=0處的切線(xiàn)方程為x﹣y=0,求b、c的值;
(2)若函數(shù)F(x)是(﹣∞,+∞)上單調(diào)遞減,則 ①當(dāng)x≥0時(shí),試判斷f(x)與(x+c)2的大小關(guān)系,并證明之;
②對(duì)滿(mǎn)足題設(shè)條件的任意b、c,不等式f(c)﹣Mc2≤f(b)﹣Mb2恒成立,求M的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,圓的參數(shù)方程為(為參數(shù)),(1)直線(xiàn)過(guò)且與圓相切,求直線(xiàn)的極坐標(biāo)方程;(2)過(guò)點(diǎn)且斜率為的直線(xiàn)與圓交于, 兩點(diǎn),若,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,定義在[﹣1,2]上的函數(shù)f(x)的圖象為折線(xiàn)段ACB,
(1)求函數(shù)f(x)的解析式;
(2)請(qǐng)用數(shù)形結(jié)合的方法求不等式f(x)≥log2(x+1)的解集,不需要證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2為f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(2)若y=f(x)在[3,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=﹣ 時(shí),方程f(1﹣x)= 有實(shí)根,求實(shí)數(shù)b的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某扇形的面積為4cm2 , 周長(zhǎng)為8cm,則此扇形圓心角的弧度數(shù)是;若點(diǎn)(a,9)在函數(shù)y=3x的圖象上,則不等式 的解集為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若偶函數(shù)f(x)在(﹣∞,﹣1]上是增函數(shù),則下列關(guān)系式中成立的是( )
A.f(﹣ )<f(﹣1)<f(2)
B.f(﹣1)<f(﹣ )<f(2)??
C.f(2)<f(﹣1)<f(﹣ )
D.f(2)<f(﹣ )<f(﹣1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com