【題目】若偶函數(shù)f(x)在(﹣∞,﹣1]上是增函數(shù),則下列關(guān)系式中成立的是(
A.f(﹣ )<f(﹣1)<f(2)
B.f(﹣1)<f(﹣ )<f(2)??
C.f(2)<f(﹣1)<f(﹣
D.f(2)<f(﹣ )<f(﹣1)

【答案】D
【解析】解:∵f(x)是偶函數(shù),
∴f(﹣ )=f( ),f(﹣1)=f(1),f(﹣2)=f(2),
又f(x)在(﹣∞,﹣1]上是增函數(shù),
∴f(﹣2)<f(﹣ )<f(﹣1)
即f(2)<f(﹣ )<f(﹣1)
故選D.
題目中條件:“f(x)為偶函數(shù),”說明:“f(﹣x)=f(x)”,將不在(﹣∞,﹣1]上的數(shù)值轉(zhuǎn)化成區(qū)間(﹣∞,﹣1]上,再結(jié)合f(x)在(﹣∞,﹣1]上是增函數(shù),即可進(jìn)行判斷.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=ax3+bx2+cx+d是實(shí)數(shù)集R上的偶函數(shù),并且f(x)<0的解為(﹣2,2),則 的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)在區(qū)間[10,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)變量X的分布列為

X

﹣1

0

1

2

3

P

0.16

a2

0.3


(1)求a的值;
(2)求E(X);
(3)若Y=2X﹣3,求E(Y).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為R的函數(shù) 是奇函數(shù).
(1)求實(shí)數(shù)a,b的值;
(2)判斷f(x)在(﹣∞,+∞)上的單調(diào)性;
(3)若f(k3x)+f(3x﹣9x+2)>0對任意x≥1恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出定義:若 m﹣ <x≤m+ (其中m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x﹣{x}的四個命題:
①函數(shù)y=f(x)的定義域是R,值域是(﹣ , ]
②函數(shù)y=f(x)的圖象關(guān)于y軸對稱;
③數(shù)y=f(x)的圖象關(guān)于坐標(biāo)原點(diǎn)對稱;
④函數(shù)y=f(x)在(﹣ , ]上是增函數(shù);
則其中正確命題是(填序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲廠根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品x(百臺),其總成本為G(x)(萬元),其中固定成本為3萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本),銷售收入R(x)= ,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)y=f(x)的解析式(利潤=銷售收入﹣總成本);
(2)甲廠生產(chǎn)多少臺新產(chǎn)品時,可使盈利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)=1+
(1)判斷函數(shù)g(x)的奇偶性
(2)用定義證明函數(shù)g(x)在(﹣∞,0)上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|2﹣a≤x≤2+a},B={x|x≤1或x≥4}.
(1)當(dāng)a=3時,求A∩B;
(2)若A∩B=,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案