(本題14分)已知定義域?yàn)镽的函數(shù)是奇函數(shù)。(1)求a的值;(2)用定義判斷該函數(shù)的單調(diào)性 (3)若對(duì)任意的,不等式恒成立,求k的取值范圍;
20.(14分)解:(1)因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052122384995315330/SYS201205212239534687862680_DA.files/image001.png">是奇函數(shù)
所以f(1)= -f(-1)知………………2分
(2)解:由(1)知,
設(shè),R,且<
f(x1)-f(x2)=—=……………………4分
因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052122384995315330/SYS201205212239534687862680_DA.files/image004.png"><,,R,,>0 且>0………6分
所以f(x1)-f(x2)>0, f(x1)>f(x2)
由單調(diào)性定義可知,f(x)在上為減函數(shù)。……………………7分
(3)因f(x)是奇函數(shù),從而不等式:
等價(jià)于,………………………8分
又因為減函數(shù),由上式推得:.…………………………10分
即對(duì)一切有:,
從而判別式………………………14分
法二:由(Ⅰ)知.又由題設(shè)條件得: ,
即。,
整理得 上式對(duì)一切均成立,從而判別式
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011屆陜西省師大附中、西工大附中高三第七次聯(lián)考文數(shù) 題型:解答題
(本題14分)
已知向量動(dòng)點(diǎn)到定直線的距離等于并且滿足其中O是坐標(biāo)原點(diǎn),是參數(shù).
(I)求動(dòng)點(diǎn)的軌跡方程,并判斷曲線類型;
(Ⅱ) 當(dāng)時(shí),求的最大值和最小值;
(Ⅲ) 如果動(dòng)點(diǎn)M的軌跡是圓錐曲線,其離心率滿足求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題14分)
已知向量動(dòng)點(diǎn)到定直線的距離等于并且滿足其中O是坐標(biāo)原點(diǎn),是參數(shù).
(I)求動(dòng)點(diǎn)的軌跡方程,并判斷曲線類型;
(Ⅱ) 當(dāng)時(shí),求的最大值和最小值;
(Ⅲ) 如果動(dòng)點(diǎn)M的軌跡是圓錐曲線,其離心率滿足求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題14分)已知橢圓的兩個(gè)焦點(diǎn),且橢圓短軸的
兩個(gè)端點(diǎn)與 構(gòu)成正三角形.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)(1,0)且與坐標(biāo)軸不平行的直線與橢圓交于不同兩點(diǎn)P、Q,
若在軸上存在定點(diǎn)E(,0),使恒為定值,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題14分)
已知向量動(dòng)點(diǎn)到定直線的距離等于并且滿足其中O是坐標(biāo)原點(diǎn),是參數(shù).
(I)求動(dòng)點(diǎn)的軌跡方程,并判斷曲線類型;
(Ⅱ) 當(dāng)時(shí),求的最大值和最小值;
(Ⅲ) 如果動(dòng)點(diǎn)M的軌跡是圓錐曲線,其離心率滿足求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題14分)已知向量動(dòng)點(diǎn)到定直線的距離等于并且滿足其中是坐標(biāo)原點(diǎn),是參數(shù).
(1)求動(dòng)點(diǎn)的軌跡方程,并判斷曲線類型;
(2)當(dāng)時(shí),求的最大值和最小值;
(3)如果動(dòng)點(diǎn)的軌跡是圓錐曲線,其離心率滿足求實(shí)數(shù)的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com