【題目】已知函數(shù).
(1)若在上存在零點,求實數(shù)的取值范圍;
(2)當(dāng)時, 若對任意的,總存在使成立, 求實數(shù)的取值范圍.
【答案】(1);(2)
【解析】
試題分析:(1)利用二次函數(shù)的性質(zhì),得到函數(shù)在上單調(diào)遞減函數(shù),要存在零點只需即可;(2)存在性問題,只需函數(shù)的值域為函數(shù)的值域的子集即可求解實數(shù)的取值范圍.
試題解析:(1)解:因為函數(shù)的對稱軸是,所以在區(qū)間上是減函數(shù), 因為函數(shù)在區(qū)間上存在零點,則必有:即,解得,故所求實數(shù)的取值范圍.
(2)若對任意的,總存在使成立,只需函數(shù)的值域為函數(shù)的值域為子集. 的值域為,下求的值域.
①當(dāng)時,為常數(shù), 不符合題意舍去;
②當(dāng)時, 的值域為,要使,
需,解得. ③當(dāng)時, 的值域為,
要使,需,解得.
綜上, 的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,點O為線段BD的中點,設(shè)點P在線段CC1上,直線OP與平面A1BD所成的角為α,則sinα的取值范圍是( )
A.[ ,1]
B.[ ,1]
C.[ , ]
D.[ ,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】判斷下列命題的真假:
(1)存在一個函數(shù),既是偶函數(shù)又是奇函數(shù);
(2)每一條線段的長度都能用正有理數(shù)來表示;
(3)存在一個實數(shù)x0,使得等式 成立;
(4)x∈R,x2-3x+2=0;
(5)x0∈R, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),下列說法錯誤的是( )
A. 是的極小值點 B. 函數(shù)有且只有1個零點
C. 存在正實數(shù),使得恒成立 D. 對任意兩個正實數(shù),且,若,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點E,F(xiàn),G,H分別為空間四邊形ABCD中AB,BC,CD,AD的中點,若AC=BD,且AC與BD成90°,則四邊形EFGH是( )
A.菱形
B.梯形
C.正方形
D.空間四邊形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直三棱柱ABC﹣A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1= ,M是CC1的中點,則異面直線AB1與A1M所成角為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,已知曲線的參數(shù)方程為(, 為參數(shù)).以坐標原點為極點, 軸的正半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程為.
(Ⅰ)當(dāng)時,求曲線上的點到直線的距離的最大值;
(Ⅱ)若曲線上的所有點都在直線的下方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),實數(shù)為常數(shù)).
(1)若,且函數(shù)在上的最小值為0,求的值;
(2)若對于任意的實數(shù),函數(shù)在區(qū)間上總是減函數(shù),對每個給定的,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com