與拋物線有共同焦點(diǎn),且一條漸近線方程是的雙曲線的方程是            
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共12分)
設(shè),點(diǎn)在軸的負(fù)半軸上,點(diǎn)軸上,且
(1)當(dāng)點(diǎn)軸上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;
(2)若,是否存在垂直軸的直線被以為直徑的圓截得的弦長恒為定值?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)為拋物線y2=4x的焦點(diǎn),A是拋物線上一點(diǎn),若=-4,則點(diǎn)A的坐標(biāo)是
A.(2,±2B.(1,±2)  C.(1,2) D.(2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知曲線,點(diǎn)A(0,-2)及點(diǎn)B(3,a),從點(diǎn)A觀察點(diǎn)B,要使視線不被C擋住,則實(shí)數(shù)a的取值范圍是              
A.(-∞,10)B.(10,+∞)C.(-∞,4)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線,點(diǎn)為坐標(biāo)原點(diǎn),斜率為1的
直線與拋物線交于兩點(diǎn)
(1)若直線過點(diǎn),求的面積;
(2)若直線過拋物線的焦點(diǎn)且,求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(普通高中做)拋物線的焦點(diǎn)坐標(biāo)是  
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)(理科)已知拋物線的準(zhǔn)線與軸交于點(diǎn),為拋物線的焦點(diǎn),過點(diǎn)斜率為的直線與拋物線交于兩點(diǎn)。
(1)若,求的值;
(2)是否存在這樣的,使得拋物線上總存在點(diǎn)滿足,若存在,求的取值范圍;若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的頂點(diǎn)為原點(diǎn),焦點(diǎn)在軸上。直線與拋物線交于A、B兩點(diǎn),P(1,1)為線段AB的中點(diǎn),則拋物線的方程為(   )
     B      C      D  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線過點(diǎn)(1,1),則該拋物線的標(biāo)準(zhǔn)方程是 ______

查看答案和解析>>

同步練習(xí)冊(cè)答案