【題目】已知二次函數(shù)f(x)=ax2+bx+3在x=2時取得最小值,且函數(shù)f(x)的圖象在x軸上截得的線段長為2.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)=f(x)﹣mx的一個零點在區(qū)間(0,2)上,另一個零點在區(qū)間(2,3)上,求實數(shù)m的取值范圍.
(3)當(dāng)x∈[t,t+1]時,函數(shù)f(x)的最小值為﹣ ,求實數(shù)t的值.
【答案】
(1)解:因為二次函數(shù)f(x)=ax2+bx+3在x=2時取得最小值,
所以 =2,即b=﹣4a,
所以f(x)=ax2﹣4ax+3,
設(shè)函數(shù)f(x)的圖象在x軸上的兩個交點分別為(x1,0),(x2,0),
所以|x1﹣x2|= ﹣2,
所以a=1.
所以f(x)=x2﹣4x+3
(2)解:g(x)=f(x)﹣mx=x2﹣(m+4)x+3
因為函數(shù)g(x)的一個零點在區(qū)間(0,2)上,另一個零點在區(qū)間(2,3)上.
所以
所以﹣ <a<0
(3)解:由(1)知,f(x)=x2﹣4x+3的對稱軸是x=2,
①當(dāng)t+1≤2時,即t≤1時,函數(shù)f(x)在區(qū)間[t,t+1]上是單調(diào)減函數(shù),
所以當(dāng)x=t+1時,函數(shù)取最小值t2﹣2t= ,
解得:t=1﹣ .
②當(dāng)t<2<t+1時,即1<t<2時,
當(dāng)x=2時,函數(shù)取最小值﹣1≠ ,
③當(dāng)t≥2時,函數(shù)f(x)在區(qū)間[t,t+1]上是單調(diào)增函數(shù),
所以當(dāng)x=t時,函數(shù)取最小值t2﹣4t+3= ,
解得:t=2+ .
綜合上所述,t=1﹣ 或t=2+
【解析】(1)由已知中二次函數(shù)f(x)=ax2+bx+3在x=2時取得最小值,且函數(shù)f(x)的圖象在x軸上截得的線段長為2.求出a,b值,可得函數(shù)f(x)的解析式;(2)若函數(shù)g(x)=f(x)﹣mx的一個零點在區(qū)間(0,2)上,另一個零點在區(qū)間(2,3)上,則 ,解得實數(shù)m的取值范圍.(3)由(1)知,f(x)=x2﹣4x+3的對稱軸是x=2,分析給定區(qū)間與對稱的位置關(guān)系,結(jié)合當(dāng)x∈[t,t+1]時,函數(shù)f(x)的最小值為﹣ ,分類討論,可得實數(shù)t的值.
【考點精析】根據(jù)題目的已知條件,利用二次函數(shù)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握當(dāng)時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時,拋物線開口向下,函數(shù)在上遞增,在上遞減.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二項式( ﹣ )n展開式中的各項系數(shù)的絕對值之和為128.
(1)求展開式中系數(shù)最大的項;
(2)求展開式中所有的有理項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象增多,大氣污染危害加重,大氣污染可引起心悸、呼吸困難等心肺疾病.為了解心肺疾病是否與性別有關(guān),在市第一人民醫(yī)院隨機(jī)對入院50人進(jìn)行了問卷調(diào)查,得到如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計 | |||||||||
男 | 20 | 5 | 25 | ||||||||
女 | 10 | 15 | 25 | ||||||||
合計 | 30 | 20 | 50 | ||||||||
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |||||
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | |||||
(1)是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由;(2)已知在患心肺疾病的10位女性中,有3位又患有胃病,現(xiàn)在從患心肺疾病的10位女性中,選出3位進(jìn)行其他方面的排查,其中患胃病的人數(shù)為,求的分布列、數(shù)學(xué)期望.參考公式:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修44:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,點O(0,0), .
(1)求以為直徑的圓的直角坐標(biāo)方程;
(2)若直線的極坐標(biāo)方程為,判斷直線與圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),設(shè)關(guān)于的方程有個不同的實數(shù)解,則的所有可能的值為( )
A. 3 B. 1或3 C. 4或6 D. 3或4或6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(m2+2m) ,當(dāng)m為何值時f(x)是:
(1)正比例函數(shù)?
(2)反比例函數(shù)?
(3)二次函數(shù)?
(4)冪函數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各組函數(shù)中,表示同一函數(shù)的是( )
A.f(x)=x﹣1,g(x)= ﹣1
B.f(x)=|x|,g(x)=( )2
C.f(x)=x,g(x)=
D.f(x)=2x,g(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x-a| .
(1)當(dāng) a=2 時,解不等式 ;
(2)若 的解集為[0,2] , ,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知:f(x)=(2-x)+a(x-1)2 (a∈R)
(1)討論函數(shù)f(x)的單調(diào)區(qū)間:
(2)若對任意的x∈R,都有f(x)≤2,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com