分析 由題意畫出圖形,聯(lián)立直線方程和拋物線方程,利用根與系數(shù)的關系結合拋物線定義求得$\frac{1}{|PF|}$+$\frac{1}{|OF|}$的值.
解答 解:如圖,
由拋物線方程x2=8y,得焦點為F(0,2),
直線y=x+2過焦點F,設P(x1,y1),Q(x2,y2),
則由拋物線定義可得:|PF|=x1+2,|QF|=x2+2.
聯(lián)立$\left\{\begin{array}{l}{y=x+2}\\{{x}^{2}=8y}\end{array}\right.$,得x2-8x-16=0,
∴x1+x2=8,x1x2=-16,
∴$\frac{1}{|PF|}$+$\frac{1}{|OF|}$=$\frac{1}{{x}_{1}+2}+\frac{1}{{x}_{2}+2}=\frac{{x}_{1}+{x}_{2}+2}{{x}_{1}{x}_{2}+2({x}_{1}+{x}_{2})+4}$=$\frac{8+2}{-16+2×8+4}=\frac{5}{2}$.
故答案為:$\frac{5}{2}$.
點評 本題考查拋物線的簡單性質,考查了直線與拋物線位置關系的應用,體現(xiàn)了數(shù)學轉化思想方法,是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{99}$ | B. | $\sqrt{33}$ | C. | $4\sqrt{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 24 | B. | 30 | C. | 48 | D. | 60 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{99}{50}$ | D. | $\frac{100}{51}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3π}{2}$ | B. | $\frac{3π}{4}$ | C. | $\frac{π}{2}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com