16.關(guān)于x的方程-3cos2x+5sinx+1=0的解集為{x|x=arcsin$\frac{1}{3}$+2kπ,或x=π-arcsin$\frac{1}{3}$+2kπ,k∈Z}.

分析 利用同角三角函數(shù)關(guān)系式,將方程化簡(jiǎn),轉(zhuǎn)化為二次函數(shù)問(wèn)題求解即可.

解答 解:方程-3cos2x+5sinx+1=0可化為:方程3sin2x+5sinx-2=0,
解得:sinx=$\frac{1}{3}$,或sinx=-2(舍去),
∴x=arcsin$\frac{1}{3}$+2kπ,或x=π-arcsin$\frac{1}{3}$+2kπ,k∈Z,
故答案為:{x|x=arcsin$\frac{1}{3}$+2kπ,或x=π-arcsin$\frac{1}{3}$+2kπ,k∈Z}

點(diǎn)評(píng) 本題考查了同角三角函數(shù)關(guān)系式的轉(zhuǎn)化和三角函數(shù)的特殊值的計(jì)算和二次方程的解法.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知f(x)是定義在R上的奇函數(shù),則一定有( 。
A.f(x)+f(-x)=0B.f(x)-f(-x)=0C.$\frac{f(-x)}{f(x)}=-1$D.$\frac{f(-x)}{f(x)}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,F(xiàn)1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),A是橢圓C的上頂點(diǎn),B是直線AF2與橢圓C的另一個(gè)交點(diǎn),∠F1AF2=60°
(1)求橢圓C的離心率;
(2)若a=2,求△AF1B的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若△ABC在平面α外,它的三條邊所在的直線分別交α于P、Q、R,則點(diǎn)Q∈直線PR(用符號(hào)表示它們的位置關(guān)系).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知關(guān)于x的不等式|x-2|-|x-3|≤m對(duì)x∈R恒成立.
(1)求實(shí)數(shù)m的最小值;
(2)若a,b,c為正實(shí)數(shù),k為實(shí)數(shù)m的最小值,且$\frac{1}{a}$+$\frac{1}{2b}$+$\frac{1}{3c}$=k,求證:a+2b+3c≥9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.關(guān)于x的不等式x2-(2a+1)x+(a2+a-2)>0、x2-(a2+a)x+a3<0的解集分別為M和N
(1)試求M和N
(2)若M∩N=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.甲廠根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品x(百臺(tái)),其總成本為G(x)(萬(wàn)元),其中固定成本為15萬(wàn)元,并且每生產(chǎn)1百臺(tái)的生產(chǎn)成本為5萬(wàn)元(總成本=固定成本+生產(chǎn)成本),銷售收入R(x)=$\left\{\begin{array}{l}{-2{x}^{2}+21x+1(0≤x≤5)}\\{56(x>5)}\end{array}\right.$,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請(qǐng)完成下列問(wèn)題:
(1)寫出利潤(rùn)函數(shù)y=f(x)的解析式(利潤(rùn)=銷售收入-總成本)
(2)求甲廠可獲得利潤(rùn)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知拋物線C:x2=8y的焦點(diǎn)為F,直線y=x+2與C交于P、Q兩點(diǎn),則$\frac{1}{|PF|}$+$\frac{1}{|OF|}$的值為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.${(2\frac{7}{9})^{\frac{1}{2}}}$-(-8.4)0-lg0.00032+(1.5)-2-5lg5.

查看答案和解析>>

同步練習(xí)冊(cè)答案