分析 根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系,將不等式進行轉(zhuǎn)化即可得到結(jié)論.
解答 解:不等式xf(x)>0等價為$\left\{\begin{array}{l}{x>0}\\{f(x)>0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{f(x)<0}\end{array}\right.$,
∵f(x)為奇函數(shù)且在(-∞,0)內(nèi)是增函數(shù),f(-3)=0,
∴f(x)為奇函數(shù)且在(0,+∞)內(nèi)是增函數(shù),f(3)=0,
但當x>0時,不等式f(x)>0等價為f(x)>f(3),即x>3,
當x<0時,不等式f(x)<0等價為f(x)<f(-3),即x<-3,
綜上x>3或x<-3,
故不等式xf(x)>0的解集是(-∞,-3)∪(3,+∞),
故答案為:(-∞,-3)∪(3,+∞)
點評 本題主要考查不等式的解法,利用函數(shù)奇偶性的性質(zhì)和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)+f(-x)=0 | B. | f(x)-f(-x)=0 | C. | $\frac{f(-x)}{f(x)}=-1$ | D. | $\frac{f(-x)}{f(x)}=1$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | $\frac{17}{5}$ | D. | $\frac{19}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com