3.從數(shù)字0,1,3,5,7中取出不同的三個數(shù)作系數(shù),可以組成不同的一元二次方程ax2+bx+c=0的個數(shù)為(  )
A.24B.30C.48D.60

分析 由題意可知二次方程要求a不為0,故a只能在1,3,5,7中選,b,c沒有限制,結合排列知識可求.

解答 解:a只能在1,3,5,7中選一個有A41種,b、c可在余下的4個中任取2個,有A42種.
故可組成二次方程A41•A42=48個
故選C.

點評 本題考查排列及組合數(shù)公式,考查分類討論思想,考查分析問題解決問題能力,是基礎題

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

20.已知銷售“筆記本電腦”和“臺式電腦”所得的利潤分別是P(單位:萬元)和Q(單位:萬元),它們與進貨資金t(單位:萬元)的關系有經(jīng)驗公式P=$\frac{1}{16}$t和Q=$\frac{1}{2}$.某商場決定投入進貨資金50萬元,全部用來購入這兩種電腦,那么該商場應如何分配進貨資金,才能使銷售電腦獲得的利潤y(單位:萬元)最大?最大利潤是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.關于x的不等式x2-(2a+1)x+(a2+a-2)>0、x2-(a2+a)x+a3<0的解集分別為M和N
(1)試求M和N
(2)若M∩N=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.函數(shù)y=2-$\frac{1}{x+1}$的圖象的對稱中心的坐標是(-1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知拋物線C:x2=8y的焦點為F,直線y=x+2與C交于P、Q兩點,則$\frac{1}{|PF|}$+$\frac{1}{|OF|}$的值為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.奇函數(shù)f(x)在[0,+∞)單調遞增,則f(-2)≤f(x2-3x)≤0整數(shù)解有( 。﹤.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.各項均為正數(shù)的等比數(shù)列{an}的前n項和為Sn,若S2=2,S6=14,則S8=( 。
A.16B.20C.26D.30

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)$y=\sqrt{2-x}$,則該函數(shù)的定義域為(-∞,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知m、n是兩條不重合的直線,α、β、γ是三個兩兩不重合的平面,給出下列四個命題:
①若m⊥α,m⊥β,則α∥β;
②若m?α,n?β,m∥n,則α∥β;
③若α⊥γ,β⊥γ,則α∥β;
④若m、n是異面直線,m?α,m∥β,n?β,n∥α,則α∥β
其中真命題是(  )
A.①和②B.①和③C.①和④D.③和④

查看答案和解析>>

同步練習冊答案