18.設(shè)α和β為不重合的兩個(gè)平面,給出下列命題:
(1)若α內(nèi)的兩條相交直線分別平行于β內(nèi)的兩條直線,則α平行于β;
(2)若α外一條直線l與α內(nèi)的一條直線平行,則l和α平行;
(3)設(shè)α和β相交于直線l,若α內(nèi)有一條直線垂直于l,則α和β垂直;
(4)若l與α內(nèi)的兩條直線垂直,則直線l與α垂直.上面命題中,其中錯(cuò)誤的個(gè)數(shù)是2.

分析 由面面平行的判定說明(1)正確;由線面平行的判定說明(2)正確;由題意得到α與β所成角可能是銳角、直角或鈍角說明(3)錯(cuò)誤;由線面垂直的判定說明(4)錯(cuò)誤.

解答 解:(1)若α內(nèi)的兩條相交直線分別平行于β內(nèi)的兩條直線,由面面平行的判定可得α平行于β,(1)正確;
(2)若α外一條直線l與α內(nèi)的一條直線平行,則由線面平行的判定說明l和α平行,(2)正確;
(3)設(shè)α和β相交于直線l,若α內(nèi)有一條直線垂直于l,則α和β垂直,錯(cuò)誤,α與β所成角可能是銳角、直角或鈍角;
(4)若l與α內(nèi)的兩條直線垂直,則直線l與α垂直,錯(cuò)誤,只有l(wèi)與α內(nèi)的兩條相交直線垂直時(shí),才有直線l與α垂直.
∴錯(cuò)誤命題的個(gè)數(shù)是2個(gè).
故答案為:2.

點(diǎn)評(píng) 本題考查線面之間的位置關(guān)系,解題的關(guān)鍵是熟練應(yīng)用線面平行和垂直的判定定理,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知角$(α+\frac{π}{3})$的終邊經(jīng)過點(diǎn)$P(2,\;4\sqrt{3})$,則tanα=$\frac{{\sqrt{3}}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某人射擊一次命中目標(biāo)的概率為$\frac{1}{2}$,則此人射擊6次,3次命中且恰有2次連續(xù)命中的概率為( 。
A.C${\;}_{6}^{3}$($\frac{1}{2}$)6B.A${\;}_{4}^{2}$($\frac{1}{2}$)6C.C${\;}_{4}^{2}$($\frac{1}{2}$)6D.C${\;}_{4}^{1}$($\frac{1}{2}$)6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)命題p:?x∈R,x2-2x>a;命題q:$?{x_0}∈R,{x_0}^2+2a{x_0}+2-a=0$.如果命題“p∨q”為真,“p∧q”為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=$\frac{\sqrt{3-x}}{x+1}$+log3(x+2)的定義域是(-2,-1)∪(-1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)a=30.2,b=0.23,c=log0.23,則a,b,c的大小關(guān)系是( 。
A.a>c>bB.b>c>aC.b>a>cD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知f(x)=$\frac{b-{2}^{x}}{a+{2}^{x+1}}$是定義在R上的奇函數(shù).
(1)求f(x)的解析式.
(2)若不等式f(t2-2t)+f(2t2-k)≤0對(duì)$t∈[{\frac{1}{4},+∞})$恒成立,求k的最大值.
(3)證明:對(duì)任意x,c∈R,不等式f(x)<c2-3c+3恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知命題p:橢圓離心率越大,橢圓越扁;命題q:雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上一點(diǎn)P到左焦點(diǎn)距離為7,則P到右焦點(diǎn)距離為1或13.則下列命題中為真命題的是(  )
A.(?p)∨qB.p∧qC.(?p)∧(?q)D.(?p)∨(?q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=-2x${\;}^{\frac{1}{2}}$
(1)求f(x)的定義域
(2)證明f(x)在定義域內(nèi)是減函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案