【題目】等腰直角三角形ABC的直角頂點(diǎn)A在x軸的正半軸上,B在y軸的正半軸上,C在第一象限,設(shè)∠BAO=θ(O為坐標(biāo)原點(diǎn)),AB=AC=2,當(dāng)OC的長(zhǎng)取得最大值時(shí),tanθ的值為(
A.
B.﹣1+
C.
D.

【答案】A
【解析】解:由題意畫出圖象如圖所示:
過點(diǎn)C做x軸的垂線,垂足為D,AB=AC=2,
在RT△ABO中,∠BAO=θ,則OA=2cosθ,
∵∠BAC= ,∴∠ACD=θ,
在RT△ACD中,AD=2sinθ,CD=2cosθ,
∴OD=OA+AD=2(sinθ+cosθ),
則OC2=OD2+CD2=4(1+sin2θ)+4cos2θ
=6+4sin2θ+2cos2θ=6+2 sin(2θ+α),
其中 , ,
當(dāng)sin(2θ+α)=1時(shí),OC的長(zhǎng)取得最大值,
,則 ,
,
,
,解得tanθ= ,則tanθ= ,
故選:A.

【考點(diǎn)精析】本題主要考查了兩角和與差的正切公式的相關(guān)知識(shí)點(diǎn),需要掌握兩角和與差的正切公式:才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(xt)=xt2+bxt
(1)若b=2,且xt=log2t,t∈[ ,2],求f(xt)的最大值;
(2)當(dāng)y=f(xt)與y=f(f(xt))有相同的值域時(shí),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于無窮數(shù)列,記,若數(shù)列滿足:“存在,使得只要),必有”,則稱數(shù)列具有性質(zhì).

(Ⅰ)若數(shù)列滿足判斷數(shù)列是否具有性質(zhì)?是否具有性質(zhì)

(Ⅱ)求證:“是有限集”是“數(shù)列具有性質(zhì)”的必要不充分條件;

(Ⅲ)已知是各項(xiàng)為正整數(shù)的數(shù)列,且既具有性質(zhì),又具有性質(zhì),求證:存在整數(shù),使得是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是菱形所在平面外一點(diǎn), 是等邊三角形, , , 的中點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)求證:平面平面

(Ⅲ)求直線與平面的所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱所有棱長(zhǎng)都是2,D棱AC的中點(diǎn),E是棱的中點(diǎn),AE交于點(diǎn)H.

(1)求證:平面;

(2)求二面角的余弦值;

(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中, 為棱上一動(dòng)點(diǎn), 為底面上一動(dòng)點(diǎn), 的中點(diǎn),若點(diǎn)都運(yùn)動(dòng)時(shí),點(diǎn)構(gòu)成的點(diǎn)集是一個(gè)空間幾何體,則這個(gè)幾何體是

A. 棱柱 B. 棱臺(tái) C. 棱錐 D. 球的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),圓

1)過點(diǎn)的圓的切線只有一條,求的值及切線方程;

2)若過點(diǎn)且在兩坐標(biāo)軸上截距相等的直線被圓截得的弦長(zhǎng)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面PAD平面ABCDPAPD,PA=PD,ABADAB=1,AD=2, .

1)求證:PD⊥平面PAB;

2)求直線PB與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓.

(1)若橢圓的右焦點(diǎn)坐標(biāo)為,求的值;

(2)由橢圓上不同三點(diǎn)構(gòu)成三角形稱為橢圓的內(nèi)接三角形.若以為直角頂點(diǎn)的橢圓的內(nèi)接等腰直角三角形恰有三個(gè),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案