(I) 已知拋物線過焦點
的動直線l交拋物線于A,B兩點,O為坐標原點, 求證:
為定值;
(Ⅱ)由 (Ⅰ) 可知: 過拋物線的焦點的動直線 l 交拋物線于
兩點, 存在定點
, 使得
為定值. 請寫出關(guān)于橢圓的類似結(jié)論,并給出證明.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知離心率為的橢圓
過點
,
為坐標原點,平行于
的直線
交橢圓于
不同的兩點
。
(1)求橢圓的方程。
(2)證明:若直線的斜率分別為
、
,求證:
+
=0。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C:,
為拋物線上一點,
為
關(guān)于
軸對稱的點,
為坐標原點.(1)若
,求
點的坐標;
(2)若過滿足(1)中的點作直線
交拋物線
于
兩點, 且斜率分別為
,且
,求證:直線
過定點,并求出該定點坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知橢圓的中心在坐標原點,焦點在
軸上,橢圓
上的點到焦點距離的最大值為
,最小值為
.
(1)求橢圓的標準方程;
(2)若直線與橢圓
相交于
兩點(
不是左右頂點),且以
為直徑的圓過橢圓
的右頂點.求證:直線
過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知焦點在軸上的雙曲線
的兩條漸近線過坐標原點,且兩條漸近線
與以點 為圓心,1為半徑的圓相切,又知
的一個焦點與
關(guān)于直線
對稱.
(1)求雙曲線的方程;
(2)設(shè)直線與雙曲線
的左支交于
,
兩點,另一直線
經(jīng)過
及
的中點,求直線
在
軸上的截距
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分l0分)直角坐標系xOy中,以原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的方程為,直線
的方程為
(t為參數(shù)),直線
與曲線C的公共點為T.
(Ⅰ)求點T的極坐標;(Ⅱ)過點T作直線被曲線C截得的線段長為2,求直線
的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在原點,焦點在軸上,以兩個焦點和短軸的兩個端點為頂點的四邊形是一個面積為8的正方形(記為Q).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點P是橢圓C的左準線與軸的交點,過點P的直線
與橢圓C相交于M,N兩點,當線段MN的中點落在正方形Q內(nèi)(包括邊界)時,求直線
的斜率的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
標準方程下的橢圓的短軸長為,焦點
,右準線
與
軸相交于點
,且
,過點
的直線和橢圓相交于點
.
(1)求橢圓的方程和離心率;
(2)若,求直線
的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com