標準方程下的橢圓的短軸長為,焦點
,右準線
與
軸相交于點
,且
,過點
的直線和橢圓相交于點
.
(1)求橢圓的方程和離心率;
(2)若,求直線
的方程.
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)
已知橢圓的中心在原點,焦點在x軸上,長軸長是短軸長的2倍且經(jīng)過點M(2,1),平行于OM的直線在y軸上的截距為m(m≠0),
交橢圓于A、B兩個不同點。
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與x軸始終圍成一個等腰三角形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分) 已知圓過橢圓
的兩焦點,與橢圓有且僅有兩個公共點;直線
與圓
相切 ,與橢圓
相交于
兩點記
(1)求橢圓的方程;
(2)求的取值范圍;
(3)求的面積S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(I) 已知拋物線過焦點
的動直線l交拋物線于A,B兩點,O為坐標原點, 求證:
為定值;
(Ⅱ)由 (Ⅰ) 可知: 過拋物線的焦點的動直線 l 交拋物線于
兩點, 存在定點
, 使得
為定值. 請寫出關于橢圓的類似結論,并給出證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知橢圓的左右焦點分別為
、
,短軸兩個端點為
、
,且四邊形
是邊長為2的正方形。
(1)求橢圓方程;
(2)若分別是橢圓長軸的左右端點,動點
滿足
,連接
,交橢圓于點
;證明:
為定值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線C的方程C:y2 ="2" p x(p>0)過點A(1,-2).
(I)求拋物線C的方程,并求其準線方程;
(II)是否存在平行于OA(O為坐標原點)的直線l,使得直線l與拋物線C有公共點,且直線
OA與l的距離等于?若存在,求出直線l的方程;若不存在,說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com