【題目】為節(jié)能環(huán)保,推進新能源汽車推廣和應用,對購買純電動汽車的用戶進行財政補貼,財政補貼由地方財政補貼和國家財政補貼兩部分組成. 某地補貼政策如下(表示純電續(xù)航里程):

三個純電動汽車店分別銷售不同品牌的純電動汽車,在一個月內它們的銷售情況如下:

(每位客戶只能購買一輛純電動汽車

(1)從上述購買純電動汽車的客戶中隨機選一人,求此人購買的是店純電動汽車且享受補貼不低于3.5萬元的概率;

(2)從上述兩個純電動汽車店的客戶中各隨機選一人,求恰有一人享受5萬元財政補貼的概率;

(3)從上述三個純電動汽車店的客戶中各隨機選一人, 這3個人享受的財政補貼分別記為. 求隨機變量的分布列. 試比較數(shù)學期望的大小;比較方差 的大小. (只需寫出結論)

【答案】(1);(2);(3),.

【解析】

(1)由題意知從A,B,C三個純電動汽車4s店購買純電動汽車的客戶共70人,購買型號Ⅰ,型號Ⅱ,型號Ⅲ純電動汽車享受補貼分別為2.5萬元,3.5萬元,5萬元,從上述購買純電動汽車的客戶中任選一人,共70個結果,此人購買的是B店純電動汽車且享受補貼不低于3.5萬元(購買型號Ⅱ或型號Ⅲ)的結果共16個,由此能求出此人購買的是B店純電動汽車且享受補貼不低于3.5萬元的概率.

(2)從上述B,C純電動汽車4s店的客戶中各隨機抽取一人,共400個等可能結果,其中恰有一人享受5萬元財政補貼(即1人購買型號Ⅲ,1人沒有購買型號Ⅲ)的結果為4×8+16×12=224,由此能求出恰有一人享受5萬元財政補貼的概率.

(3)隨機變量XA的可能取值為2.5,3.5,5,分別求出相應的概率,由此能求出隨機變量XA的分布列,由題意EXC)>EXA)>EXB),DXC)>DXA)>DXB).

(1)由題意可知,從三個純電動汽車店購買純電動汽車的客戶共70人,購買型號Ⅰ,型號Ⅱ,型號Ⅲ純電動汽車享受補貼分別為2.5萬元,3.5萬元,5萬元.

從上述購買純電動汽車的客戶中任選一人共70個等可能的結果,

此人購買的是店純電動汽車且享受補貼不低于3.5萬元(購買型號Ⅱ或型號Ⅲ)的結果共16個,

所以所求概率為.

(2)從上述純電動汽車店的客戶中各隨機選一人共個等可能的結果.其中恰有一人享受5萬元財政補貼(即1人購買型號Ⅲ,1人沒購買型號Ⅲ)的結果為,所求概率為

.

(3)隨機變量的分布列為

2.5

3.5

5

,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某大學在一次公益活動中聘用了10名志愿者,他們分別來自于A、B、C三個不同的專業(yè),其中A專業(yè)2人,B專業(yè)3人,C專業(yè)5人,現(xiàn)從這10人中任意選取3人參加一個訪談節(jié)目.

(1)求3個人來自兩個不同專業(yè)的概率;

(2)設X表示取到B專業(yè)的人數(shù),求X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),上的動點,點滿足,點的軌跡為曲線.

(Ⅰ)求的普通方程;

(Ⅱ)在以為極點,軸的正半軸為極軸的極坐標系中,直線交于,兩點,交軸于點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】的方格表中取出46個方格染成紅色.證明:存在一塊由4個方格構成的區(qū)域,其中由至少3個方格被染成紅色.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】改革開放四十年以來,北京市居民生活發(fā)生了翻天覆地的變化.隨著經濟快速增長、居民收入穩(wěn)步提升,消費結構逐步優(yōu)化升級,生活品質顯著增強,美好生活藍圖正在快速構建.北京市城鎮(zhèn)居民人均消費支出從1998年的7 500元增長到2017年的40 000元.1998年與2017年北京市城鎮(zhèn)居民消費結構對比如下圖所示:

1998年北京市城鎮(zhèn)居民消費結構 2017年北京市城鎮(zhèn)居民消費結構

則下列敘述中不正確的是( )

A. 2017年北京市城鎮(zhèn)居民食品支出占比同1998年相比大幅度降低

B. 2017年北京市城鎮(zhèn)居民人均教育文化娛樂類支出同1998年相比有所減少

C. 2017年北京市城鎮(zhèn)居民醫(yī)療保健支出占比同1998年相比提高約

D. 2017年北京市城鎮(zhèn)居民人均交通和通信類支出突破5 000元,大約是1998年的14倍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有 個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,

約定:每個人通過擲一枚質地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為 的人去參加

甲游戲,擲出點數(shù)大于 的人去參加乙游戲.

1)求這 個人中恰有 個人去參加甲游戲的概率;

2)求這 個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為節(jié)能環(huán)保,推進新能源汽車推廣和應用,對購買純電動汽車的用戶進行財政補貼. 某地補貼政策如下(表示純電續(xù)航里程):

三個純電動汽車4s店分別銷售不同品牌的純電動汽車,在一個月內它們的銷售情況如下: (每位客戶只能購買一輛純電動汽車

(Ⅰ)從上述購買純電動汽車的客戶中隨機選一人,求此人購買的是店純電動汽車且享受補貼不低于3.5萬元的概率;

(Ⅱ)從購買店純電動汽車的客戶中按分層抽樣的方法隨機選6人,再從這6人中隨機選2人,進行使用滿意度的調查,求這兩人享受補貼恰好相同的概率;

(Ⅲ)分別用表示購買店和店純電動汽車客戶享受補貼的平均值,比較的大小.(只需寫出結論)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,平面平面,四邊形是邊長為4的正方形,,,分別是,的中點.

(1)求證:平面;

(2)若直線與平面所成角等于,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求曲線在點處的切線方程;

(2)討論的單調性.

查看答案和解析>>

同步練習冊答案