【題目】給出兩塊相同的正三角形鐵皮(如圖1,圖2),
(1)要求用其中一塊剪拼成一個三棱錐模型,另一塊剪拼成一個正三棱柱模型,使它們的全面積都與原三角形的面積相等,
①請設計一種剪拼方法,分別用虛線標示在圖1、圖2中,并作簡要說明;
②試比較你剪拼的正三棱錐與正三棱柱的體積的大小
(2)設正三角形鐵皮的邊長為,將正三角形鐵皮的三個角切去三個全等的四邊形,再把它的邊沿虛線折起(如圖3),做成一個無蓋的正三角形底鐵皮箱,當箱底邊長為多少時,箱子容積最大?最大容積是多少?
【答案】(1)①答案見解析;②;(2)當箱子底邊長為時,箱子容積最大,最大值為.
【解析】
①可以利用正三角形的圖形特征,進行分割
②直接求解比較大小即可
(2) 設箱底邊長為,列出,利用求導的方法求出最值點,據(jù)此即可求解
解:(1)①如圖1,沿正三角形三邊中點連線折起,可拼得一個正三棱錐.
如圖2,正三角形三個角上剪出三個相同的四邊形,
其較長的一組鄰邊邊長為三角形邊長的,
有一組對角為直角,余下部分按虛線折起,
可成一個缺上底的正三棱柱,
而剪出的三個相同的四邊形恰好拼成這個正三棱錐的上底.
②依上面剪拼方法,有.
推理如下:
設給出正三角形紙片的邊長為2,那么,
正三棱錐與正三棱柱的底面都是邊長為1的正三角形,
其面積為.現(xiàn)在計算它們的高:
,.
所以.
(2)設箱底邊長為,則箱高為,
箱子的容積為﹒
由解得(舍),,
且當時,;當時,,
所以函數(shù)在處取得極大值,
這個極大值就是函數(shù)的最大值:
.
答:當箱子底邊長為時,箱子容積最大,最大值為.
科目:高中數(shù)學 來源: 題型:
【題目】新型冠狀病毒(SARS-COV-2)是2019年在人體中發(fā)現(xiàn)的冠狀病毒新毒株,主要通過呼吸道飛沫進行傳播,鑒于其特殊的傳播途徑,某科學醫(yī)療機構發(fā)現(xiàn)一次性醫(yī)用口罩起著一定的防護作用一般,口罩在投入市場前需做一系列的檢測,其中罩體污點、鼻梁條缺陷、耳繩異常等常規(guī)瑕疵肉眼可見,而耳繩尤為關鍵,會出現(xiàn)耳繩缺失、錯位、錯熔、漏熔四種情況 .現(xiàn)在生產(chǎn)商大多采用全自動生產(chǎn)線生產(chǎn)口罩,某工廠現(xiàn)有甲(1臺本體機拖2臺耳帶機)和乙(1臺本體機拖3臺耳帶機)兩條生產(chǎn)線,已知甲生產(chǎn)線的日產(chǎn)量為7萬只,乙生產(chǎn)線的日產(chǎn)量為10萬只,生產(chǎn)商為了了解是否有必要更換原有的甲生產(chǎn)線,在設備生產(chǎn)狀況相同,不計其他影響的狀態(tài)下,分別統(tǒng)計了兩條生產(chǎn)線生產(chǎn)的1000只口罩的耳繩情況,得到的統(tǒng)計數(shù)據(jù)如下:
耳繩情況 | 合格 | 缺失 | 錯位 | 錯熔 | 漏熔 |
甲生產(chǎn)線 | 950 | 9 | 19 | 11 | 11 |
乙生產(chǎn)線 | 900 | 19 | 35 | 25 | 21 |
(1)從乙生產(chǎn)線生產(chǎn)的1000只口罩中隨機抽取3只,將合格品的只數(shù)記為,求的分布列和數(shù)學期望;
(2)假設口罩的生產(chǎn)成本為0.4元/只,若耳繩發(fā)生缺陷時可通過人工修復至合格來挽回損失。耳繩缺失、漏熔時人工修復費為0.01元/只;錯位與錯熔時需更換耳繩,其中耳繩成本為0.06元/根,人工修復費為0.02元/只.
①以修復費的平均數(shù)作為判斷依據(jù),判斷哪一條生產(chǎn)線在每日生產(chǎn)過程中挽回損失時所需費用較少?
②若經(jīng)一次檢驗就合格的口罩,生產(chǎn)商以1元/只的批發(fā)價銷售給市場,經(jīng)人工修復的打八折出售。以該工廠的日平均收入為依據(jù)分析該生產(chǎn)商是否有必要更換甲生產(chǎn)線?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P一ABCD中,AB=AD=2BC=2,BC∥AD,AB⊥AD,△PBD為正三角形.且PA=2.
(1)證明:平面PAB⊥平面PBC;
(2)若點P到底面ABCD的距離為2,E是線段PD上一點,且PB∥平面ACE,求四面體A-CDE的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高中數(shù)學建模興趣小組的同學為了研究所在地區(qū)男高中生的身高與體重的關系,從若干個高中男學生中抽取了1000個樣本,得到如下數(shù)據(jù).
數(shù)據(jù)一:身高在(單位:)的體重頻數(shù)統(tǒng)計
體重 () | ||||||||
人數(shù) | 20 | 60 | 100 | 100 | 80 | 20 | 10 | 10 |
數(shù)據(jù)二:身高所在的區(qū)間含樣本的個數(shù)及部分數(shù)據(jù)
身高 | |||||
平均體重 | 45 | 53.6 | 60 | 75 |
(1)依據(jù)數(shù)據(jù)一將上面男高中生身高在(單位:)體重的頻率分布直方圖補充完整,并利用頻率分布直方圖估計身高在(單位:)的中學生的平均體重;(保留小數(shù)點后一位)
(2)依據(jù)數(shù)據(jù)一、二,計算身高(取值為區(qū)間中點)和體重的相關系數(shù)約為0.99,能否用線性回歸直線來刻畫中學生身高與體重的相關關系,請說明理由;若能,求出該回歸直線方程;
(3)說明殘差平方和或相關指數(shù)與線性回歸模型擬合效果之間關系.(只需寫出結論,不需要計算)
參考公式:,.
參考數(shù)據(jù):(1);(2);(3),,;(4).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【選修4-4:坐標系與參數(shù)方程】
在直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,直線的參數(shù)方程為(為參數(shù)),曲線的極坐標方程為.
(1)寫出直線的普通方程和曲線的直角坐標方程;
(2)若點的坐標為,直線與曲線交于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】記焦點在同一條軸上且離心率相同的橢圓為“相似橢圓”.已知橢圓,以橢圓的焦點為頂點作相似橢圓.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與橢圓交于兩點,且與橢圓僅有一個公共點,試判斷的面積是否為定值(為坐標原點)?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點為,右準線為.點是橢圓上異于長軸端點的任意一點,連接并延長交橢圓于點,線段的中點為,為坐標原點,且直線與右準線交于點.
(1)求橢圓的標準方程;
(2)若,求點的坐標;
(3)試確定直線與橢圓的公共點的個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,四點,,,中恰有三點在橢圓上,拋物線焦點到準線的距離為.
(1)求橢圓、拋物線的方程;
(2)過橢圓右頂點Q的直線與拋物線交于點A、B,射線、分別交橢圓于點、.
(i)證明:為定值;
(ii)求的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我們可從這個商標中抽象出一個如圖靠背而坐的兩條優(yōu)美的曲線,下列函數(shù)中大致可“完美”局部表達這對曲線的函數(shù)是( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com