【題目】已知橢圓,四點,,,中恰有三點在橢圓上,拋物線焦點到準線的距離為.
(1)求橢圓、拋物線的方程;
(2)過橢圓右頂點Q的直線與拋物線交于點A、B,射線、分別交橢圓于點、.
(i)證明:為定值;
(ii)求的面積的最小值.
【答案】(1),;(2)(i)證明見解析,(ii).
【解析】
(1)由橢圓的對稱性可得所給的四個點哪幾個在橢圓上,代入橢圓的方程可得的值,進而求出橢圓的方程;
(2)(i)由題意可得直線的斜率不為,設(shè)直線的方程與拋物線聯(lián)立求出兩根之和,及兩根之積可證得 為定值;
(ii)設(shè)直線的斜率,設(shè)的直線方程與橢圓聯(lián)立求出的坐標,求出,的值,由(Ⅰ)可得,求出面積的表達式,由均值不等式求出面積的最小值.
(1)關(guān)于軸對稱,關(guān)于軸對稱,
在上,
若在上,則,
不在上,在上,
,
又,;
(2)(i)由(1)可得右頂點,由題意可得直線的不為,設(shè),設(shè),
將直線與代入拋物線的方程,可得
,;
所以 ,
所以為定值;
(ii),所以設(shè)直線
將直線代入中得:
所以,即;
同理得,
所以,即;
當時,.
科目:高中數(shù)學 來源: 題型:
【題目】遼寧省六校協(xié)作體(葫蘆島第一高中、東港二中、鳳城一中、北鎮(zhèn)高中、瓦房店高中、丹東四中)中的某校文科實驗班的名學生期中考試的語文、數(shù)學成績都不低于分,其中語文成績的頻率分布直方圖如圖所示,成績分組區(qū)間是:、、、、.
(1)根據(jù)頻率分布直方圖,估計這名學生語文成績的中位數(shù)和平均數(shù);(同一組數(shù)據(jù)用該區(qū)間的中點值作代表;中位數(shù)精確到)
(2)若這名學生語文成績某些分數(shù)段的人數(shù)與數(shù)學成績相應(yīng)分數(shù)段的人數(shù)之比如下表所示:
分組區(qū)間 | ||||
從數(shù)學成績在的學生中隨機選取人,求選出的人中恰好有人數(shù)學成績在的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出兩塊相同的正三角形鐵皮(如圖1,圖2),
(1)要求用其中一塊剪拼成一個三棱錐模型,另一塊剪拼成一個正三棱柱模型,使它們的全面積都與原三角形的面積相等,
①請設(shè)計一種剪拼方法,分別用虛線標示在圖1、圖2中,并作簡要說明;
②試比較你剪拼的正三棱錐與正三棱柱的體積的大小
(2)設(shè)正三角形鐵皮的邊長為,將正三角形鐵皮的三個角切去三個全等的四邊形,再把它的邊沿虛線折起(如圖3),做成一個無蓋的正三角形底鐵皮箱,當箱底邊長為多少時,箱子容積最大?最大容積是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“新冠肺炎”疫情的控制需要根據(jù)大數(shù)據(jù)進行分析,并有針對性的采取措施.下圖是甲、乙兩個省份從2月7日到2月13日一周內(nèi)的新增“新冠肺炎”確診人數(shù)的折線圖.根據(jù)圖中甲、乙兩省的數(shù)字特征進行比對,下列說法錯誤的是( )
A.2月7日到2月13日甲省的平均新增“新冠肺炎”確診人數(shù)低于乙省
B.2月7日到2月13日甲省的單日新增“新冠肺炎”確診人數(shù)最大值小于乙省
C.2月7日到2月13日乙省相對甲省的新增“新冠甲省肺炎”確診人數(shù)的波動大
D.后四日(2月10日至13日)乙省每日新增“新冠肺炎”確診人數(shù)均比甲省多
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線(為參數(shù)),直線 (為參數(shù), ),直線與曲線相切于點,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程及點的極坐標;
(2)曲線的直角坐標方程為,直線的極坐標方程為,直線與曲線交于在,兩點,記的面積為,的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓:的左、右焦點分別是,,離心率為,左、右頂點分別為,.過且垂直于軸的直線被橢圓截得的線段長為1.
(1)求橢圓的標準方程;
(2)經(jīng)過點的直線與橢圓相交于不同的兩點、(不與點、重合),直線與直線相交于點,求證:、、三點共線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“地攤經(jīng)濟”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號,某生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù)(,2,3,4,5,6),如表所示:
試銷單價x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量y(件) | q | 84 | 83 | 80 | 75 | 68 |
已知,,
(1)試求q,若變量x,y具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y(件)關(guān)于試銷單價x(元)的線性回歸方程;
(2)用表示用(1)中所求的線性回歸方程得到的與對應(yīng)的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)對應(yīng)的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取3個,求“好數(shù)據(jù)”個數(shù)的分布列和數(shù)學期望.
(參考公式:線性回歸方程中,的最小二乘估計分別為,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)f(x)=|lnx|,若函數(shù)g(x)=f(x)-ax在區(qū)間(0,4)上有三個零點,則實數(shù)a的取值范圍是( )
A. (0,)B. (,e)C. (,)D. (0,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com