如圖,在正方體ABCD-A1B1C1D1中,P為線段AD1上的中點,Q為線段PC1上的中點.
(1)求證:DP⊥平面ABC1D1;
(2)求證:CQ∥平面BDP.
考點:直線與平面平行的判定,直線與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:(1)利用正方體的性質(zhì)得到AB⊥平面AA1D1D,得到DP⊥AB,又P為AD1的中點,所以DP⊥AD1,由線面垂直的判定定理證明;
(2)連BC1,與B1C相交于H,則QH∥PB,又CH∥PD,QH∩CH=H,利用線面平行的判定定理證明.
解答: 證明(1)因為正方體ABCD-A1B1C1D1中,AB⊥平面AA1D1D,-------(2分)
DP?平面AA1D1D,所以DP⊥AB,-------(3分)
又P為AD1的中點,所以DP⊥AD1,-------(4分)
AB∩AD1=A,所以DP⊥平面ABC1D1---------(6分)
(2)證明:連BC1,與B1C相交于H,則QH∥PB,又CH∥PD,QH∩CH=H,
所以平面QHC∥平面PBD,所以CQ∥平面BDP-------(14分)
點評:本題考查了線面垂直和線面平行的性質(zhì)定理和判定定理的運用;關(guān)鍵是熟練運用定理.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2014-2015學年山東省濰坊市高一上學期10月月考數(shù)學試卷(解析版) 題型:選擇題

已知函數(shù),,則的值為 ( )

A. 13 B. C.7 D.

查看答案和解析>>

科目:高中數(shù)學 來源:2014-2015學年江西省贛州市北校高二1月月考文科數(shù)學試卷(解析版) 題型:選擇題

已知雙曲線與橢圓有相同的焦點,則該雙曲線的漸近線方程為( )

(A) (B) (C) (D)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)(x∈R)滿足f(-x)=f(x),f(-x)=f(2-x),且當x∈[0,1]時,f(x)=
x3
,又函數(shù)g(x)=|xcos(πx)|,則函數(shù)h(x)=g(x)-f(x)在[-
1
2
3
2
]上的零點個數(shù)為( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3-3x2+1,若f(x)存在唯一的零點x0,且x0<0,則a的取值范圍是(  )
A、(2,+∞)
B、(1,+∞)
C、(-∞,-2)
D、(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C:y2=4x和直線l:y=x+4.
(Ⅰ)求拋物線C上一點到直線l的最短距離;
(Ⅱ)設(shè)M為l上任意一點,過M作兩條不平行于x軸的直線.若這兩條直線與拋物線C都只有一個公共點,這兩個公共點分別記為A,B,證明:直線AB過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{bn}的前n項和為Sn,且b1=
2
+1,S3=3
2
+6
(1)求數(shù)列{bn}的通項公式;
(2)證明數(shù)列{bn}中任意不同的三項都不可能成為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用演繹推理證明f(x)=|sinx|是周期函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算下列定積分
π
2
0
sin2
x
2
dx.

查看答案和解析>>

同步練習冊答案