已知函數(shù)f(x)=ax3-3x2+1,若f(x)存在唯一的零點x0,且x0<0,則a的取值范圍是( 。
A、(2,+∞)
B、(1,+∞)
C、(-∞,-2)
D、(-∞,-1)
考點:函數(shù)零點的判定定理
專題:函數(shù)的性質(zhì)及應用
分析:由題意判斷出a>0,再由題意可知f(
2
a
)>0,從而求出a
解答: 解:∵函數(shù)f(x)=ax3-3x2+1,f(0)=1,且f(x)存在唯一的零點x°,且x°<0,
∴a>0,
∴f′(x)=3ax2-6x=3x(ax-2)=0時的解為x=0,x=
2
a

∴f(
2
a
)=a(
2
a
3-3(
2
a
2+1=
a2-4
a2
>0,
則a>2.
故選:A
點評:本題考查了函數(shù)的零點的判斷,求導數(shù)判斷求解即可,
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014-2015學年山東省濰坊市高一上學期10月月考數(shù)學試卷(解析版) 題型:選擇題

已知函數(shù)上的增函數(shù),是其圖象上的兩點,那么的解集是 ( )

A.(1,4)

B.(-1,2)

C.

D.

查看答案和解析>>

科目:高中數(shù)學 來源:2014-2015學年江西省贛州市北校高二1月月考文科數(shù)學試卷(解析版) 題型:填空題

執(zhí)行如圖所示的程序框圖,若輸入的,則輸出的結果是 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知菱形ABCD與橢圓
x2
4
+
y2
3
=1相切,則菱形ABCD面積的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點,PA=PD=AD=2.
(Ⅰ)若平面PAD⊥平面ABCD,點N是PC的中點,求二面角N-BQ-C的余弦值;
(Ⅱ)點M在線段PC上,PM=tPC,試確定t的值,使PA∥平面MQB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,P為線段AD1上的中點,Q為線段PC1上的中點.
(1)求證:DP⊥平面ABC1D1;
(2)求證:CQ∥平面BDP.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面向量
a
b
,|
a
|=2,
b
=(2,
3
),若|
a
-
b
|=
6
,則
a
b
的值是( 。
A、
5
4
B、
3
4
C、
3
2
D、
5
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x3-3x+m恰有2個不同的零點,則實數(shù)m的值為(  )
A、±2B、±1
C、-2或1D、-1或2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足an+1>an(n∈N*),a1=1,該數(shù)列的前三項分別加上1,1,3后順次成為等比數(shù)列{bn}的前三項.
(1)求數(shù)列{an}、{bn}的通項公式;
(2)令Tn=
a1
b1
+
a2
b2
+…+
an
bn
(n∈N*),證明:Tn+
2n+3
2n
-
1
n
<3.

查看答案和解析>>

同步練習冊答案