【題目】已知為常數(shù), ,函數(shù), (其中是自然對數(shù)的底數(shù)).
(1)過坐標原點作曲線的切線,設(shè)切點為,求證: ;
(2)令,若函數(shù)在區(qū)間上是單調(diào)函數(shù),求的取值范圍.
【答案】(1) ;(2) .
【解析】試題分析:(1)先對函數(shù)求導(dǎo), ,可得切線的斜率,即,由是方程的解,且在上是增函數(shù),可證;(2)由, ,先研究函數(shù),則,由在上是減函數(shù),可得,通過研究的正負可判斷的單調(diào)性,進而可得函數(shù)的單調(diào)性,可求出參數(shù)范圍.
試題解析:(1)(),
所以切線的斜率,
整理得,顯然, 是這個方程的解,
又因為在上是增函數(shù),
所以方程有唯一實數(shù)解,
故.
(2), ,
設(shè),則,
易知在上是減函數(shù),從而.
①當,即時, , 在區(qū)間上是增函數(shù),
∵,∴在上恒成立,即在上恒成立.
∴在區(qū)間上是減函數(shù),所以滿足題意.
②當,即時,設(shè)函數(shù)的唯一零點為,
則在上遞增,在上遞減,
又∵,∴,
又∵,
∴在內(nèi)有唯一一個零點,
當時, ,當時, .
從而在遞減,在遞增,與在區(qū)間上是單調(diào)函數(shù)矛盾.
∴不合題意.綜上①②得, .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為等差數(shù)列的前n項和,是正項等比數(shù)列,且,.在①,②,③這三個條件中任選一個,回答下列為題:
(1)求數(shù)列和的通項公式;
(2)如果(m,),寫出m,n的關(guān)系式,并求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,點,點是圓上任意一點,線段的垂直平分線交線段于點.
(1)求點的軌跡方程.
(2)設(shè)點,是的軌跡上異于頂點的任意兩點,以為直徑的圓過點.求證直線過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】環(huán)保部門要對所有的新車模型進行廣泛測試,以確定它的行車里程的等級,右表是對 100 輛新車模型在一個耗油單位內(nèi)行車里程(單位:公里)的測試結(jié)果.
(Ⅰ)做出上述測試結(jié)果的頻率分布直方圖,并指出其中位數(shù)落在哪一組;
(Ⅱ)用分層抽樣的方法從行車里程在區(qū)間[38,40)與[40,42)的新車模型中任取5輛,并從這5輛中隨機抽取2輛,求其中恰有一個新車模型行車里程在[40,42)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x-m|-|2x+2m|(m>0).
(Ⅰ)當m=1時,求不等式f(x)≥1的解集;
(Ⅱ)若x∈R,t∈R,使得f(x)+|t-1|<|t+1|,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(,).
(1)當時,在上是單調(diào)遞增函數(shù),求的取值范圍;
(2)當時,討論函數(shù)的單調(diào)區(qū)間;
(3)對于任意給定的正實數(shù),證明:存在實數(shù),使得
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】影響消費水平的原因很多,其中重要的一項是工資收入.研究這兩個變量的關(guān)系的一個方法是通過隨機抽樣的方法,在一定范圍內(nèi)收集被調(diào)查者的工資收入和他們的消費狀況.下面的數(shù)據(jù)是某機構(gòu)收集的某一年內(nèi)上海、江蘇、浙江、安徽、福建五個地區(qū)的職工平均工資與城鎮(zhèn)居民消費水平(單位:萬元).
地區(qū) | 上海 | 江蘇 | 浙江 | 安徽 | 福建 |
職工平均工資 | 9.8 | 6.9 | 6.4 | 6.2 | 5.6 |
城鎮(zhèn)居民消費水平 | 6.6 | 4.6 | 4.4 | 3.9 | 3.8 |
(1)利用江蘇、浙江、安徽三個地區(qū)的職工平均工資和他們的消費水平,求出線性回歸方程,其中,;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過1萬,則認為得到的線性回歸方程是可靠的,試問所得的線性回歸方程是否可靠?(的結(jié)果保留兩位小數(shù))
(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,AA1ABAC2,AB⊥AC,M是棱BC的中點點P在線段A1B上.
(1)若P是線段A1B的中點,求直線MP與直線AC所成角的大;
(2)若是的中點,直線與平面所成角的正弦值為,求線段BP的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com