【題目】已知函數(shù)

(1)若,求的極值;

(2)若,都有成立,求k的取值范圍.

【答案】1)極小值為,無(wú)極大值;(2.

【解析】

1)先求導(dǎo),再根據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性的關(guān)系即可求出單調(diào)區(qū)間;

2)求出函數(shù)的導(dǎo)數(shù),通過討論的取值范圍,求出函數(shù)的單調(diào)區(qū)間,求出函數(shù)的最小值,根據(jù),求出的取值范圍即可.

(1)時(shí),,令,解得,

時(shí),函數(shù)取得極小值,;無(wú)極大值;

(2),

①當(dāng)時(shí),,

所以,當(dāng)時(shí),,當(dāng)時(shí),,

在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),

所以在區(qū)間上的最小值為,且,符合題意;

②當(dāng)時(shí),令,得

所以,當(dāng)時(shí),,在區(qū)間,為增函數(shù),

所以在區(qū)間上的的最小值為,且,符合題意;

當(dāng)時(shí),,

當(dāng)時(shí),,在區(qū)間上是減函數(shù),

所以,不滿足對(duì)任意的,恒成立,

綜上,的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為某市國(guó)慶節(jié)7天假期的商品房日認(rèn)購(gòu)量(單位:套)與日成交量(單位:套)的折線圖,則下面結(jié)論中正確的是( )

A.日成交量的中位數(shù)是16

B.日成交量超過日平均成交量的有1

C.日認(rèn)購(gòu)量與日期是正相關(guān)關(guān)系

D.日認(rèn)購(gòu)量的方差大于日成交量的方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國(guó)特色社會(huì)主義生態(tài)文明的價(jià)值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機(jī)抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)()的檢測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下:

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

天數(shù)

6

14

18

27

25

10

1)從空氣質(zhì)量指數(shù)屬于的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;

2)已知某企業(yè)每天的經(jīng)濟(jì)損失(單位:元)與空氣質(zhì)量指數(shù)的關(guān)系式為,試估計(jì)該企業(yè)一個(gè)月(按30天計(jì)算)的經(jīng)濟(jì)損失的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦距為2,過點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)橢圓的右焦點(diǎn)為F,定點(diǎn),過點(diǎn)F且斜率不為零的直線l與橢圓交于A,B兩點(diǎn),以線段AP為直徑的圓與直線的另一個(gè)交點(diǎn)為Q,證明:直線BQ恒過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為常數(shù), ,函數(shù), (其中是自然對(duì)數(shù)的底數(shù)).

(1)過坐標(biāo)原點(diǎn)作曲線的切線,設(shè)切點(diǎn)為,求證:

(2)令,若函數(shù)在區(qū)間上是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線焦點(diǎn)為,直線與拋物線交于兩點(diǎn).到準(zhǔn)線的距離之和最小為8.

1)求拋物線方程;

2)若拋物線上一點(diǎn)縱坐標(biāo)為,直線分別交準(zhǔn)線于.求證:以為直徑的圓過焦點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線恰有一個(gè)公共點(diǎn).

(Ⅰ)求曲線的極坐標(biāo)方程;

(Ⅱ)已知曲線上兩點(diǎn)滿足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(k+)lnx+,k∈[4,+∞),曲線y=f(x)上總存在兩點(diǎn)M(x1,y1),N(x2,y2),使曲線y=f(x)在M,N兩點(diǎn)處的切線互相平行,則x1+x2的取值范圍為

A. ,+∞) B. ,+∞) C. [,+∞) D. [,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)在以為直徑的上運(yùn)動(dòng),平面,且,點(diǎn)分別是的中點(diǎn).

(1)求證:;

(2)若,求點(diǎn)平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案