【題目】已知,點(diǎn)軸上,點(diǎn)軸上,且,當(dāng)點(diǎn)軸上運(yùn)動時,動點(diǎn)的軌跡為曲線.過軸上一點(diǎn)的直線交曲線兩點(diǎn).

1)求曲線的軌跡方程;

2)證明:存在唯一的一點(diǎn),使得為常數(shù),并確定點(diǎn)的坐標(biāo).

【答案】12)證明見解析;.

【解析】

1)根據(jù)題意,畫出幾何圖形,設(shè),由幾何關(guān)系可知,結(jié)合點(diǎn)的坐標(biāo)即可求得的關(guān)系,化簡即可求得曲線的軌跡方程;

2)由點(diǎn)在軸上,可設(shè),設(shè)出過點(diǎn)的直線方程為,聯(lián)立拋物線方程,并由兩點(diǎn)間距離公式表示出,并代入中化簡即可求得常數(shù)的值,即可確定點(diǎn)的坐標(biāo).

1)根據(jù)題意可知,,點(diǎn)軸上,點(diǎn)軸上,且,,畫出幾何關(guān)系如下圖所示:

設(shè),中點(diǎn),

因?yàn)?/span>軸上,所以點(diǎn)的橫坐標(biāo)為,

由等腰三角形三線合一可知,

,展開化簡可得

所以曲線的軌跡方程為.

2)證明:點(diǎn)軸上一點(diǎn),設(shè),

則過點(diǎn)的直線方程為,交拋物線,兩點(diǎn).

,化簡變形可得,

所以,

由兩點(diǎn)間距離公式可得

,

所以

代入化簡可得

,

所以當(dāng)為常數(shù),且,

此時.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.命題,則的否命題為:,則

B.命題存在,使得的否定是:對任意,均有

C.命題的終邊在第一象限角,則是銳角的逆否命題為真命題

D.已知上的可導(dǎo)函數(shù),則是函數(shù)的極值點(diǎn)的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長等于2正方形中,點(diǎn)Q中點(diǎn),點(diǎn)M,N分別在線段上移動(M不與A,B重合,N不與C,D重合),且,沿著將四邊形折起,使得二面角為直二面角,則三棱錐體積的最大值為________;當(dāng)三棱錐體積最大時,其外接球的表面積為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是公差為1的等差數(shù)列,是單調(diào)遞增的等比數(shù)列,且,,.

1)求的通項(xiàng)公式;

2)設(shè),數(shù)列的前項(xiàng)和,求;

3)若數(shù)列的前項(xiàng)積為,求.

4)數(shù)列滿足,其中,,求.

5)解決數(shù)列問題時,經(jīng)常需要先研究陌生的通項(xiàng)公式,只有先把通項(xiàng)公式研究明白,然后盡可能轉(zhuǎn)化為我們熟悉的數(shù)列問題,由此使問題得到解決.通過對上面(2)(3)(4)問題的解決,你認(rèn)為研究陌生數(shù)列的通項(xiàng)問題有哪些常用方法,要求介紹兩個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,面,底面為矩形,且,,O的中點(diǎn),點(diǎn)E上,且

1)證明:;

2)在上是否存在一點(diǎn)F,使,若存在,試確定點(diǎn)F的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四面體的所有頂點(diǎn)在球的表面上,平面,,,則球的表面積為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.

1)證明:平面;

2)若的中點(diǎn),二面角等于60°,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓過點(diǎn)且與直線相切.

1)求圓心的軌跡的方程;

2)過的直線與交于,兩點(diǎn),分別過,的垂線,垂足為,,線段的中點(diǎn)為.

①求證:;

②記四邊形的面積分別為,,若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三位同學(xué)在一項(xiàng)集訓(xùn)中的40次測試分?jǐn)?shù)都在[50100]內(nèi),將他們的測試分?jǐn)?shù)分別繪制成頻率分布直方圖,如圖所示,記甲、乙、丙的分?jǐn)?shù)標(biāo)準(zhǔn)差分別為s1,s2,s3,則它們的大小關(guān)系為( )

A.s1s2s3B.s1s3s2

C.s3s1s2D.s3s2s1

查看答案和解析>>

同步練習(xí)冊答案