【題目】小明家的晚報(bào)在下午任何一個(gè)時(shí)間隨機(jī)地被送到,他們一家人在下午任何一個(gè)時(shí)間隨機(jī)地開始晚餐.為了計(jì)算晚報(bào)在晚餐開始之前被送到的概率,某小組借助隨機(jī)數(shù)表的模擬方法來計(jì)算概率,他們的具體做法是將每個(gè)1分鐘的時(shí)間段看作個(gè)體進(jìn)行編號(hào),編號(hào)為01,編號(hào)為02,依此類推,編號(hào)為90.在隨機(jī)數(shù)表中每次選取一個(gè)四位數(shù),前兩位表示晚報(bào)時(shí)間,后兩位表示晚餐時(shí)間,如果讀取的四位數(shù)表示的晚報(bào)晚餐時(shí)間有一個(gè)不符合實(shí)際意義,視為這次讀取的無效數(shù)據(jù)(例如下表中的第一個(gè)四位數(shù)7840中的78不符合晚報(bào)時(shí)間).按照從左向右,讀完第一行,再從左向右讀第二行的順序,讀完下表,用頻率估計(jì)晚報(bào)在晚餐開始之前被送到的概率為
7840 1160 5054 3139 8082 7732 5034 3682 4829 4052 |
4201 6277 5678 5188 6854 0200 8650 7584 0136 7655 |
A.B.C.D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上有唯一的極值點(diǎn),求的取值范圍,并證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,將沿翻折至,設(shè)直線與直線所成角為α,直線與平面所成角為β,二面角的平面角為γ,當(dāng)γ為銳角時(shí)( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小趙和小王約定在早上至之間到某公交站搭乘公交車去上學(xué),已知在這段時(shí)間內(nèi),共有班公交車到達(dá)該站,到站的時(shí)間分別為,,如果他們約定見車就搭乘,則小趙和小王恰好能搭乘同一班公交車去上學(xué)的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在新型冠狀病毒疫情期間,商業(yè)活動(dòng)受到很大影響某小型零售連鎖店總部統(tǒng)計(jì)了本地區(qū)50家加盟店2月份的零售情況,統(tǒng)計(jì)數(shù)據(jù)如圖所示.據(jù)估計(jì),平均銷售收入比去年同期下降40%,則去年2月份這50家加盟店的平均銷售收入約為( )
A.6.6萬元B.3.96萬元C.9.9萬元D.7.92萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代勞動(dòng)人民在筑城、筑堤、挖溝、挖渠、建倉、建囤等工程中,積累了豐富的經(jīng)驗(yàn),總結(jié)出了一套有關(guān)體積、容積計(jì)算的方法,這些方法以實(shí)際問題的形式被收入我國古代數(shù)學(xué)名著《九章算術(shù)》中.《九章算術(shù)商功》:“斜解立方,得兩塹堵.斜解塹堵,其一為陽馬,一為鱉臑.陽馬居二,鱉臑居一,不易之率也.合兩鱉臑三而一,驗(yàn)之以棊,其形露矣.”下圖解釋了這段話中由一個(gè)長方體,得到“塹堵”、“陽馬”、“鱉臑”的過程.已知如圖塹堵的棱長,則鱉臑的外接球的體積為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)你有一筆資金,現(xiàn)有三種投資方案,這三種方案的回報(bào)如下:
方案一:每天回報(bào)40元;
方案二:第一天回報(bào)10元,以后每天比前一天多回報(bào)10元;
方案三:第一天回報(bào)0.4元,以后每天的回報(bào)比前一天翻一番.
現(xiàn)打算投資10天,三種投資方案的總收益分別為,,,則( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn)S( -2,0) ,T(2,0),動(dòng)點(diǎn)P為平面上一個(gè)動(dòng)點(diǎn),且直線SP、TP的斜率之積為.
(1)求動(dòng)點(diǎn)P的軌跡E的方程;
(2)設(shè)點(diǎn)B為軌跡E與y軸正半軸的交點(diǎn),是否存在直線l,使得l交軌跡E于M,N兩點(diǎn),且F(1,0)恰是△BMN的垂心?若存在,求l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓,其右焦點(diǎn)F到其右準(zhǔn)線的距離為1,離心率為,A,B分別為橢圓的上、下頂點(diǎn),過點(diǎn)F且不與x軸重合的直線l與橢圓交于C,D兩點(diǎn),與y軸交于點(diǎn)P,直線與交于點(diǎn)Q.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)時(shí),求直線的方程;
(3)求證:為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com