【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓,其右焦點(diǎn)F到其右準(zhǔn)線的距離為1,離心率為,A,B分別為橢圓的上、下頂點(diǎn),過(guò)點(diǎn)F且不與x軸重合的直線l與橢圓交于C,D兩點(diǎn),與y軸交于點(diǎn)P,直線交于點(diǎn)Q.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)時(shí),求直線的方程;

3)求證:為定值.

【答案】1;(2;(3)證明見(jiàn)解析.

【解析】

1)根據(jù)題意列出等式:,,聯(lián)立即得解;

2)設(shè)直線l的方程為,與橢圓聯(lián)立,利用弦長(zhǎng)公式表示,代入求解即可;

(3)設(shè),,表示方程,聯(lián)立得到的坐標(biāo),利用韋達(dá)定理化簡(jiǎn),利用坐標(biāo)表示,可得證.

1)解:由題意可知,所以,所以

所以橢圓的標(biāo)準(zhǔn)方程為

2)解:因?yàn)橹本l不與x軸重合,所以斜率不為0.

因?yàn)?/span>l過(guò)點(diǎn),所以設(shè)直線l的方程為.

,得.

設(shè),則,

因?yàn)?/span>,所以,得,所以,

所以直線l的方程為

3)證明:在中令,所以.

而直線的方程為,直線的方程為.

由此得到

.

不妨設(shè),則①,②,

所以.

將①②③代入式,得

,

所以為定值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明家的晚報(bào)在下午任何一個(gè)時(shí)間隨機(jī)地被送到,他們一家人在下午任何一個(gè)時(shí)間隨機(jī)地開(kāi)始晚餐.為了計(jì)算晚報(bào)在晚餐開(kāi)始之前被送到的概率,某小組借助隨機(jī)數(shù)表的模擬方法來(lái)計(jì)算概率,他們的具體做法是將每個(gè)1分鐘的時(shí)間段看作個(gè)體進(jìn)行編號(hào),編號(hào)為01,編號(hào)為02,依此類推,編號(hào)為90.在隨機(jī)數(shù)表中每次選取一個(gè)四位數(shù),前兩位表示晚報(bào)時(shí)間,后兩位表示晚餐時(shí)間,如果讀取的四位數(shù)表示的晚報(bào)晚餐時(shí)間有一個(gè)不符合實(shí)際意義,視為這次讀取的無(wú)效數(shù)據(jù)(例如下表中的第一個(gè)四位數(shù)7840中的78不符合晚報(bào)時(shí)間).按照從左向右,讀完第一行,再?gòu)淖笙蛴易x第二行的順序,讀完下表,用頻率估計(jì)晚報(bào)在晚餐開(kāi)始之前被送到的概率為  

7840 1160 5054 3139 8082 7732 5034 3682 4829 4052

4201 6277 5678 5188 6854 0200 8650 7584 0136 7655

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是邊長(zhǎng)為2的菱形,∠DAB60°ADPD,點(diǎn)F為棱PD的中點(diǎn).

1)在棱BC上是否存在一點(diǎn)E,使得CF∥平面PAE,并說(shuō)明理由;

2)若ACPB,二面角DFCB的余弦值為時(shí),求直線AF與平面BCF所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)在區(qū)間上存在兩個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知0m2,動(dòng)點(diǎn)M到兩定點(diǎn)F1(﹣m,0),F2m,0)的距離之和為4,設(shè)點(diǎn)M的軌跡為曲線C,若曲線C過(guò)點(diǎn).

1)求m的值以及曲線C的方程;

2)過(guò)定點(diǎn)且斜率不為零的直線l與曲線C交于A,B兩點(diǎn).證明:以AB為直徑的圓過(guò)曲線C的右頂點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合ST,SN*,TN*S,T中至少有兩個(gè)元素,且S,T滿足:

①對(duì)于任意x,yS,若xy,都有xyT

②對(duì)于任意xyT,若x<y,則S;

下列命題正確的是(

A.S4個(gè)元素,則ST7個(gè)元素

B.S4個(gè)元素,則ST6個(gè)元素

C.S3個(gè)元素,則ST5個(gè)元素

D.S3個(gè)元素,則ST4個(gè)元素

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】政府工作報(bào)告指出,2019年我國(guó)深入實(shí)施創(chuàng)新驅(qū)動(dòng)發(fā)展戰(zhàn)略,創(chuàng)新能力和效率進(jìn)一步提升;2020年要提升科技支撐能力,健全以企業(yè)為主體的產(chǎn)學(xué)研一體化創(chuàng)新機(jī)制,某企業(yè)為了提升行業(yè)核心競(jìng)爭(zhēng)力,逐漸加大了科技投入;該企業(yè)連續(xù)5年來(lái)的科技投入x(百萬(wàn)元)與收益y(百萬(wàn)元)的數(shù)據(jù)統(tǒng)計(jì)如下:

科技投入x

1

2

3

4

5

收益y

40

50

60

70

90

1)請(qǐng)根據(jù)表中數(shù)據(jù),建立y關(guān)于x的線性回歸方程;

2)按照(1)中模型,已知科技投入8百萬(wàn)元時(shí)收益為140百萬(wàn)元,求殘差(殘差真實(shí)值-預(yù)報(bào)值).

參考數(shù)據(jù):回歸直線方程,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在①;②;③,這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中,然后解答補(bǔ)充完整的題目.

在△中,內(nèi)角AB,C所對(duì)的邊分別為.且滿足_________.

1)求

2)已知,△的外接圓半徑為,求△的邊AB上的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】質(zhì)量是企業(yè)的生命線,某企業(yè)在一個(gè)批次產(chǎn)品中隨機(jī)抽檢件,并按質(zhì)量指標(biāo)值進(jìn)行統(tǒng)計(jì)分析,得到表格如表:

質(zhì)量指標(biāo)值

等級(jí)

頻數(shù)

頻率

三等品

10

0.1

二等品

30

一等品

0.4

特等品

20

0.2

合計(jì)

1

1)求,;

2)從質(zhì)量指標(biāo)值在的產(chǎn)品中,按照等級(jí)分層抽樣抽取6件,再?gòu)倪@6件中隨機(jī)抽取2件,求至少有1件特等品被抽到的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案