【題目】小趙和小王約定在早上至之間到某公交站搭乘公交車去上學(xué),已知在這段時間內(nèi),共有班公交車到達該站,到站的時間分別為,,如果他們約定見車就搭乘,則小趙和小王恰好能搭乘同一班公交車去上學(xué)的概率為__________.
【答案】
【解析】分析:設(shè)甲到達汽車站的時刻為x,乙到達汽車站的時刻為y,則0≤x≤15,0≤y≤15,由幾何概型的計算公式能求出甲乙兩人乘同一班車的概率.
詳解:如圖,設(shè)甲到達汽車站的時刻為x,乙到達汽車站的時刻為y,
則0≤x≤15,0≤y≤15,
甲、乙兩人到達汽車站的時刻(x,y)所對應(yīng)的區(qū)域在平面直角坐標(biāo)系中畫出(如圖所示)是大正方形.將2班車到站的時刻在圖形中畫出,則甲、乙兩人要想乘同一班車,
必須滿足{(x,y)|或,
即(x,y)必須落在圖形中的2個帶陰影的正方形內(nèi),
所以由幾何概型的計算公式得P==.
故答案為:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)滿足,當(dāng)x∈[0,1]時,f(x)=x,若在區(qū)間(-1,1]上方程f(x)-mx-m=0有兩個不同的實根,則實數(shù)m的取值范圍是()
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形, 在上,且面.
(1)求證: 是的中點;
(2)在上是否存在點,使二面角為直角?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點為極點,軸的非負半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).
(1)分別求出曲線和直線的直角坐標(biāo)方程;
(2)若點在曲線上,且到直線的距離為1,求滿足這樣條件的點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在研究函數(shù)f(x)=(x∈R)時,分別給出下面幾個結(jié)論:
①等式f(-x)=-f(x)在x∈R時恒成立;
②函數(shù)f(x)的值域為(-1,1);
③若x1≠x2,則一定有f(x1)≠f(x2);
④方程f(x)=x在R上有三個根.
其中正確結(jié)論的序號有______.(請將你認為正確的結(jié)論的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市氣象站觀測點記錄的連續(xù)天里,指數(shù)(空氣質(zhì)量指數(shù))與當(dāng)天的空氣水平可見度(單位cm)的情況如下表1:
表1
該市某月指數(shù)頻數(shù)分布如下表2:
表2
頻數(shù) |
(1)設(shè),根據(jù)表1的數(shù)據(jù),求出關(guān)于的回歸方程;
(參考公式:;其中,)
(2)小張開了一家洗車店,經(jīng)統(tǒng)計,當(dāng)不高于時,洗車店平均每天虧損約元;當(dāng)在至時,洗車店平均每天收入月元;當(dāng)大于時,洗車店平均每天收入約元;根據(jù)表估計小張的洗車店該月份平均每天的收入.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)若關(guān)于x的不等式ax2﹣3x+2>0(a∈R)的解集為{x|x<1或x>b},求a,b的值;
(2)解關(guān)于x的不等式ax2﹣3x+2>5﹣ax(a∈R).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)家門前有一筆直公路直通長城,星期天,他騎自行車勻速前往旅游,他先前進了,覺得有點累,就休息了一段時間,想想路途遙遠,有些泄氣,就沿原路返回騎了, 當(dāng)他記起詩句“不到長城非好漢”,便調(diào)轉(zhuǎn)車頭繼續(xù)前進. 則該同學(xué)離起點的距離與時間的函數(shù)關(guān)系的圖象大致為( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com