【題目】已知四棱錐,底面是、邊長(zhǎng)為的菱形,又底,且,點(diǎn)分別是棱的中點(diǎn).
(1)證明:平面;
(2)證明:平面平面;
(3)求點(diǎn)到平面的距離.[
【答案】(1)詳見(jiàn)解析(2)詳見(jiàn)解析(3)
【解析】
試題分析:(1)要證DN∥平面PMB,只要證DN∥MQ;(2)要證平面PMB⊥平面PAD,只要證MB⊥平面PAD;
(3)利用PD是三棱錐P-AMB的高PD=2,棱錐A-PMB的體積=棱錐P-AMB的體積,利用棱錐的體積公式解之
試題解析:(1)證明:取中點(diǎn),連接,因?yàn)?/span>分別是棱中點(diǎn),
所以,且,于是,
.
(2),
又因?yàn)榈酌?/span>是、邊長(zhǎng)為的菱形,且為中點(diǎn),所以,又,
所以..
(3)因?yàn)?/span>是中點(diǎn),所以點(diǎn)與到平面等距離.過(guò)點(diǎn)作于,由(2)由平面平面,所以平面.
故是點(diǎn)到平面的距離.
∴點(diǎn)到平面的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)(為自然對(duì)數(shù)的底數(shù))時(shí),求的最小值;
(2)討論函數(shù)零點(diǎn)的個(gè)數(shù);
(3)若對(duì)任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,橢圓上的點(diǎn)滿足,且的面積為.
(1)求橢圓的方程;
(2)設(shè)橢圓的左、右頂點(diǎn)分別為、,過(guò)點(diǎn)的動(dòng)直線與橢圓相交于、兩點(diǎn),直線與直線的交點(diǎn)為,證明:點(diǎn)總在直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】口袋中裝有質(zhì)地大小完全相同的5個(gè)球,編號(hào)分別為1,2,3,4,5,甲、乙兩人玩一種游戲:甲先摸一個(gè)球,記下編號(hào),放回后乙再摸一個(gè)球,記下編號(hào).如果兩個(gè)編號(hào)的和為偶數(shù)就算甲勝,否則算乙勝.
(1)求甲勝且編號(hào)的和為6的事件發(fā)生的概率;
(2)這種游戲規(guī)則公平嗎?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某地參加2015 年夏令營(yíng)的名學(xué)生的身體健康情況,將學(xué)生編號(hào)為,采用系統(tǒng)抽樣的方法抽取一個(gè)容量為的樣本,且抽到的最小號(hào)碼為,已知這名學(xué)生分住在三個(gè)營(yíng)區(qū),從到在第一營(yíng)區(qū),從到在第二營(yíng)區(qū),從到在第三營(yíng)區(qū),則第一、第二、第三營(yíng)區(qū)被抽中的人數(shù)分別為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的一個(gè)零點(diǎn)為-2,當(dāng)時(shí)最大值為0.
(1)求的值;
(2)若對(duì),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b3、b4、b5.
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)數(shù)列{bn}的前n項(xiàng)和為Sn,求證:數(shù)列{Sn+}是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)函數(shù)的圖象與的圖象無(wú)公共點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅱ)是否存在實(shí)數(shù),使得對(duì)任意的,都有函數(shù)的圖象在的圖象的下方?若存在,請(qǐng)求出整數(shù)的最大值;若不存在,請(qǐng)說(shuō)理由.
(參考數(shù)據(jù):,,).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次,在處每投進(jìn)一球得3分;在處每投進(jìn)一球得2分,如果前兩次得分之和超過(guò)3分就停止投籃;否則投第3次,某同學(xué)在處的抽中率,在處的抽中率為,該同學(xué)選擇現(xiàn)在處投第一球,以后都在處投,且每次投籃都互不影響,用表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為:
0 | 2 | 3 | 4 | 5 | |
0.03 |
(1)求的值;
(2)求隨機(jī)變量的數(shù)學(xué)期望;
(3)試比較該同學(xué)選擇上述方式投籃得分超過(guò)3分與選擇都在處投籃得分超過(guò)3分的概率的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com