【題目】在一次籃球定點投籃訓(xùn)練中,規(guī)定每人最多投3次,在處每投進一球得3分;在處每投進一球得2分,如果前兩次得分之和超過3分就停止投籃;否則投第3次,某同學(xué)在處的抽中率,在處的抽中率為,該同學(xué)選擇現(xiàn)在處投第一球,以后都在處投,且每次投籃都互不影響,用表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為:

0

2

3

4

5

0.03

1的值;

2求隨機變量的數(shù)學(xué)期望;

3試比較該同學(xué)選擇上述方式投籃得分超過3分與選擇都在處投籃得分超過3分的概率的大。

【答案】1;2;3該同學(xué)選擇上述方式投籃得分超過分的概率大于選擇都在處投籃得分超過分的概率.

【解析】

試題分析:1根據(jù),解得;2根據(jù)相互獨立事件概率計算公式,計算得,由此計算得期望;3表示事件該同學(xué)在處投第一球,以后都在處投,得分超過,用表示事件該同學(xué)都在處投,得分超過,計算得,.

試題解析:

1由題意可知,對應(yīng)的事件為三次投籃沒有一次投中

,

,解得

2根據(jù)題意,,

,

3表示事件該同學(xué)在處投第一球,以后都在處投,得分超過3分,用表示事件該同學(xué)都在處投,得分超過3分,

,

即該同學(xué)選擇都在處投籃得分超過3分的概率的大于該同學(xué)在處投第一球,以后都在處投,得分超過3分的概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐,底面、邊長為的菱形,又,且,點分別是棱的中點.

(1證明:平面;

(2)證明:平面平面

(3)求點到平面的距離.[

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx(a0)的導(dǎo)函數(shù)f(x)=-2x+7,數(shù)列{an}的前n項和為Sn,點Pn(n,Sn)(nN*)均在函數(shù)y=f(x)的圖象上,求數(shù)列{an}的通項公式及Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的對稱軸為,.

1)求函數(shù)的最小值及取得最小值時的值;

2)試確定的取值范圍,使至少有一個實根;

3)當(dāng)時,,對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)絡(luò)購物已經(jīng)被大多數(shù)人接受,隨著時間的推移,網(wǎng)絡(luò)購物的人越來越多,然而也有部分人對網(wǎng)絡(luò)購物的質(zhì)量和信譽產(chǎn)生懷疑。對此,某新聞媒體進行了調(diào)查,在所有參與調(diào)查的人中,持“支持”和“不支持”態(tài)度的人數(shù)如下表所示:

年齡 態(tài)度

支持

不支持

20歲以上50歲以下

800

200

50歲以 (含50歲)

100

300

(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個人,已知從持“支持”態(tài)度的人中抽取了9人,求的值;

(2)是否有99.9%的把握認為支持網(wǎng)絡(luò)購物與年齡有關(guān)?

參考數(shù)據(jù):

,其中

0.05

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,,側(cè)面是邊長為2的等邊三角形,點的中點,且平面平面

I求異面直線所成角的余弦值;

II若點在線段上移動,是否存在點使平面與平面所成的角為?若存在,指出點的位置,否則說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在原點處有公共切線

I為函數(shù)的極大值點,求的單調(diào)區(qū)間表示;

II,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知隨機變量X~N(μ,σ2),且其正態(tài)曲線在(-∞,80)上是增函數(shù),在(80,+∞)上為減函數(shù),且P(72≤X≤88)=0.682 6.

(1)求參數(shù)μ,σ的值;

(2)求P(64<X≤72).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某生態(tài)園將一三角形地塊的一角開辟為水果園種植桃樹,已知角,的長度均大于米,現(xiàn)在邊界處建圍墻,在處圍竹籬笆

1若圍墻 長度為米,如何圍可使得三角形地塊的面積最大?

2已知段圍墻高米,段圍墻高米,造價均為每平方米若圍圍墻用了元,問如何圍可使竹籬笆用料最?

查看答案和解析>>

同步練習(xí)冊答案