【題目】已知函數(shù)的一個零點為-2,當時最大值為0.
(1)求的值;
(2)若對,不等式恒成立,求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】
試題分析:(1)首先由零點的定義可得出關(guān)于的關(guān)系式,然后由二次函數(shù)的圖像及其性質(zhì)可得函數(shù)的最大值得出另一個關(guān)于的關(guān)系式,最后聯(lián)立方程即可得出的值;(2)首先將已知轉(zhuǎn)化為對恒成立,然后運用二次函數(shù)的圖像及其性質(zhì)可得出已知條件所滿足的條件,進而得出所求的結(jié)果.
試題解析:(1)的一個零點為-2,又當時最大值為0.即另一個零點在,則,即函數(shù)的兩個零點分別為-2,4.
或解:-2是零點,,
當,即時,,(舍去)
當,即時,,,此時
(2)由(1)知, ,即對恒成立,則①或②
解得①或 ②,綜合得m的取值范圍為.
(注:亦可分離變量對恒成立)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為推行“微課、翻轉(zhuǎn)課堂”教學(xué)法,某數(shù)學(xué)老師分別用傳統(tǒng)教學(xué)和“微課、翻轉(zhuǎn)課堂”兩種不同的教學(xué)方式,在甲、乙兩個平行班級進行教學(xué)實驗,為了比較教學(xué)效果,期中考試后,分別從兩個班級中各隨機抽取20名學(xué)生的成績進行統(tǒng)計,結(jié)果如下表:
記成績不低于70分者為“成績優(yōu)良”.
(1)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷“成績優(yōu)良與教學(xué)方式是否有關(guān)”?
附:
臨界值表:
(2)現(xiàn)從上述40人中,學(xué)校按成績是否優(yōu)良采用分層抽樣的方法抽取8人進行考核,在這8人中,記成績不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高三數(shù)學(xué)奧林匹克競賽集訓(xùn)隊的一次數(shù)學(xué)測試成績的莖葉圖(圖1)和頻率分布直方圖(圖2)都受到不同程度的破壞,可見部分如圖所示,據(jù)此解答如下問題.
(1)求該集訓(xùn)隊總人數(shù)及分數(shù)在[80,90)之間的頻數(shù);
(2)計算頻率分布直方圖中[80,90)的矩形的高;
(3)若要從分數(shù)在[80,100]之間的試卷中任取兩份分析學(xué)生的答題情況,在抽取的試卷中,求至少有一份分數(shù)在[90,100]之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體的棱長為1,分別是棱,的中點,過直線的平面分別與棱、交于,設(shè),,給出以下四個命題:
①四邊形為平行四邊形;
②若四邊形面積,,則有最小值;
③若四棱錐的體積,,則為常函數(shù);
④若多面體的體積,,則為單調(diào)函數(shù).
其中假命題為( )
A.① ③ B.② C.③④ D.④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐,底面是、邊長為的菱形,又底,且,點分別是棱的中點.
(1)證明:平面;
(2)證明:平面平面;
(3)求點到平面的距離.[
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在銳角△ABC中,兩向量p=(2-2sin A,cos A+sin A),q=(sin A-cos A,1+sin A),且p與q是共線向量.
(1)求A的大。
(2)求函數(shù)y=2sin2B+cos()取最大值時,角B的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)當時,求曲線在點處的切線的斜率;
(2)當時,求函數(shù)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某投資商到一開發(fā)區(qū)投資72萬元建起一座蔬菜加工廠,第一年共支出12萬元,以后每年支出增加4萬元,從第一年起每年的蔬菜銷售收入均為50萬元,設(shè)表示前年的純利潤總和(=前年的總收入前年的總支出投資額).
(1)該廠從第幾年開始盈利?
(2)若干年后,投資商為開發(fā)新項目,對該廠有兩種處理方案:
① 當年平均利潤達到最大時,以48萬元出售該廠;
② 當純利潤總和達到最大時,以16萬元出售該廠,
問哪種方案更合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,,側(cè)面是邊長為2的等邊三角形,點是的中點,且平面平面.
(I)求異面直線與所成角的余弦值;
(II)若點在線段上移動,是否存在點使平面與平面所成的角為?若存在,指出點的位置,否則說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com