【題目】成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b3、b4、b5

)求數(shù)列{bn}的通項公式;

)數(shù)列{bn}的前n項和為Sn,求證:數(shù)列{Sn+}是等比數(shù)列.

【答案】)詳見解析

【解析】

試題分析:(I)利用成等差數(shù)列的三個正數(shù)的和等于15可設三個數(shù)分別為5-d,5,5+d,代入等比數(shù)列中可求d,進一步可求數(shù)列{bn}的通項公式;(II)根據(jù)(I)及等比數(shù)列的前 n項和公式可求,要證數(shù)列是等比數(shù)列即可

試題解析:(I)設成等差數(shù)列的三個正數(shù)分別為a﹣d,a,a+d

依題意,得a﹣d+a+a+d=15,解得a=5

所以{bn}中的依次為7﹣d,10,18+d

依題意,有(7﹣d)(18+d)=100,解得d=2或d=﹣13(舍去)

{bn}的第3項為5,公比為2

由b3=b122,即5=4b1,解得

所以{bn}是以首項,2為公比的等比數(shù)列,通項公式為 ……………6分

(II)數(shù)列{bn}的前和

,所以

因此{}是以為首項,公比為2的等比數(shù)列 …………………12分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,四邊形為直角梯形,平面 ,的中點,

1求證:平面 ;

2,求點到平面 的距離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從高年級學生中隨機抽取50名學生,將他們的期中考試數(shù)學成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100],得到如圖所示的頻率分布直方圖.

(1)若該校高年級共有學生1000人,試估計成績不低于60分的人數(shù);

(2)該校高二年級全體學生期中考試成績的眾數(shù)、中位數(shù)和平均數(shù)的估計值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐,底面、邊長為的菱形,又,且,點分別是棱的中點.

(1證明:平面;

(2)證明:平面平面;

(3)求點到平面的距離.[

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的最小值為0,其中,設

1的值;

2對任意,恒成立,求實數(shù)的取值范圍;

3討論方程上根的個數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

1時,求曲線在點處的切線的斜率;

2時,求函數(shù)的單調區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有編號分別為1,2,3,4,5的五道不同的政治題和編號分別為6,7,8,9的四道不同的歷史題.甲同學從這九道題中一次性隨機抽取兩道題,每道題被抽到的概率是相等的,用符號(x,y)表示事件抽到的兩道題的編號分別為x,y,且x<y..

(1)問有多少個基本事件,并列舉出來;

(2)求甲同學所抽取的兩道題的編號之和小于17但不小于11的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx(a0)的導函數(shù)f(x)=-2x+7,數(shù)列{an}的前n項和為Sn,點Pn(n,Sn)(nN*)均在函數(shù)y=f(x)的圖象上,求數(shù)列{an}的通項公式及Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),曲線在原點處有公共切線

I為函數(shù)的極大值點,求的單調區(qū)間表示;

II,求的取值范圍

查看答案和解析>>

同步練習冊答案