【題目】近年來,共享單車在我國各城市迅猛發(fā)展,為人們的出行提供了便利,但也給城市的交通管理帶來了一些困難,為掌握共享單車在省的發(fā)展情況,某調(diào)查機(jī)構(gòu)從該省抽取了5個(gè)城市,并統(tǒng)計(jì)了共享單車的指標(biāo)和指標(biāo),數(shù)據(jù)如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
指標(biāo) | 2 | 4 | 5 | 6 | 8 |
指標(biāo) | 3 | 4 | 4 | 4 | 5 |
(1)試求與間的相關(guān)系數(shù),并說明與是否具有較強(qiáng)的線性相關(guān)關(guān)系(若,則認(rèn)為與具有較強(qiáng)的線性相關(guān)關(guān)系,否則認(rèn)為沒有較強(qiáng)的線性相關(guān)關(guān)系).
(2)建立關(guān)于的回歸方程,并預(yù)測(cè)當(dāng)指標(biāo)為7時(shí),指標(biāo)的估計(jì)值.
(3)若某城市的共享單車指標(biāo)在區(qū)間的右側(cè),則認(rèn)為該城市共享單車數(shù)量過多,對(duì)城市的交通管理有較大的影響交通管理部門將進(jìn)行治理,直至指標(biāo)在區(qū)間內(nèi)現(xiàn)已知省某城市共享單車的指標(biāo)為13,則該城市的交通管理部門是否需要進(jìn)行治理?試說明理由.
參考公式:回歸直線中斜率和截距的最小二乘估計(jì)分別為
,,相關(guān)系數(shù)
參考數(shù)據(jù):,,.
【答案】(1),與具有較強(qiáng)的線性相關(guān)關(guān)系;(2),指標(biāo)的估計(jì)值為4.6;(3)城市的交通管理部門需要進(jìn)行治理,理由見解析.
【解析】
(1)求出,求出相關(guān)系數(shù)公式中的各個(gè)量,即可得出結(jié)論;
(2)利用(1)中的數(shù)據(jù)求出,求出線性回歸方程,即可求出時(shí),的值;
(3)分別求出的值,13與對(duì)比,即可得出結(jié)論.
(1)由題得,
所以,,
則.
因?yàn)?/span>,所以與具有較強(qiáng)的線性相關(guān)關(guān)系.
(2)由(1)得,,
所以線性回歸方程為.
當(dāng)時(shí),,
即當(dāng)指標(biāo)為7時(shí),指標(biāo)的估計(jì)值為4.6.
(3)由題得,
因?yàn)?/span>,所以該城市的交通管理部門需要進(jìn)行治理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,分別為的左、右頂點(diǎn),是上異于的動(dòng)點(diǎn),面積的最大值為2.
(1)求橢圓的方程;
(2)證明:直線與直線的斜率乘積為定值;
(3)設(shè)直線,分別交直線于兩點(diǎn),以為直徑作圓,當(dāng)圓的面積最小時(shí),求該圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為.現(xiàn)以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(1)求曲線的直角坐標(biāo)系方程和直線的普通方程;
(2)點(diǎn)在曲線上,且到直線的距離為,求符合條件的點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知五棱錐P-ABCDE,其中ABE,PCD均為正三角形,四邊形BCDE為等腰梯形,BE=2BC=2CD=2DE=4,PB=PE=.
(Ⅰ)求證:平面PCD⊥平面ABCDE;
(Ⅱ)若線段AP上存在一點(diǎn)M,使得三棱錐P-BEM的體積為五棱錐P-ABCDE體積的,求AM的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2α﹣4cosα=0.已知直線l的參數(shù)方程為(為參數(shù)),點(diǎn)M的直角坐標(biāo)為.
(1)求直線l和曲線C的普通方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,橢圓分別為橢圓的左、右焦點(diǎn).
(1)當(dāng)直線過右焦點(diǎn)時(shí),求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn),且,若點(diǎn)在以線段為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線C1:y=x2(p>0)的焦點(diǎn)與雙曲線C2:-y2=1的右焦點(diǎn)的連線交C1于第一象限的點(diǎn)M.若C1在點(diǎn)M處的切線平行于C2的一條漸近線,則p=( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形與均為菱形,,且.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)若為線段上的一點(diǎn),且滿足直線與平面所成角的正弦值為,求線段的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com