【題目】已知點為拋物線的焦點,過點任作兩條互相垂直的直線,,分別交拋物線于,,,四點,,分別為,的中點.
(1)求證:直線過定點,并求出該定點的坐標;
(2)設(shè)直線交拋物線于,兩點,試求的最小值.
【答案】(1)證明見解析,直線過定點(2)的最小值為.
【解析】
(1)設(shè),,顯然直線,的斜率是存在的,設(shè)直線的方程為,代入可得,可得出的中點坐標為,再根據(jù),得的中點坐標為,再令得,
得出直線恒過點,驗證,得,,三點共線,從而直線過的定點;
(2))由(1)設(shè)直線的方程為,代入可得,再設(shè),,得韋達定理,,表示出,由二次函數(shù)得出線段的最小值.
(1)設(shè),,
直線的方程為,代入可得,
則,故,
故的中點坐標為.
由,得,所以的中點坐標為.
令得,
此時,故直線過點,
當時,,.
所以,,,三點共線,
所以直線過定點.
(2)設(shè),,直線的方程為,
代入可得,則,,
故
(當時,取等號).
故,當及直線垂直軸時,取得最小值.
科目:高中數(shù)學 來源: 題型:
【題目】已知平面上兩定點M(0,﹣2)、N(0,2),P為一動點,滿足||||
(I)求動點P的軌跡C的方程;
(II)若A、B是軌跡C上的兩不同動點,且λ.分別以A、B為切點作軌跡C的切線,設(shè)其交點Q,證明為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
甲、乙、丙三名射擊運動員射中目標的概率分別為,三人各射擊一次,擊中目標的次數(shù)記為.
(1)求的分布列及數(shù)學期望;
(2)在概率(=0,1,2,3)中, 若的值最大, 求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,,,,,且為的中點,延長交于點,且在底內(nèi)的射影恰為的中點,為的中點,為上任意一點.
(1)證明:平面平面;
(2)求平面與平面所成銳角二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司有1000名員工,其中男性員工400名,采用分層抽樣的方法隨機抽取100名員工進行5G手機購買意向的調(diào)查,將計劃在今年購買5G手機的員工稱為“追光族",計劃在明年及明年以后才購買5G手機的員工稱為“觀望者”,調(diào)查結(jié)果發(fā)現(xiàn)抽取的這100名員工中屬于“追光族”的女性員工和男性員工各有20人.
(1)完成下列列聯(lián)表,并判斷是否有95%的把握認為該公司員工屬于“追光族"與“性別"有關(guān);
屬于“追光族" | 屬于“觀望者" | 合計 | |
女性員工 | |||
男性員工 | |||
合計 | 100 |
(2)已知被抽取的這100名員工中有10名是人事部的員工,這10名中有3名屬于“追光族”.現(xiàn)從這10名中隨機抽取3名,記被抽取的3名中屬于“追光族”的人數(shù)為隨機變量X,求的分布列及數(shù)學期望.
附,其中
0.15 | 0.10 | 0.05 | 0.025 | p>0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知是曲線:上的動點,將繞點順時針旋轉(zhuǎn)得到,設(shè)點的軌跡為曲線.以坐標原點為極點,軸的正半軸為極軸建立極坐標系.
(1)求曲線,的極坐標方程;
(2)在極坐標系中,點,射線與曲線,分別相交于異于極點的兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,,若橢圓經(jīng)過點,且△PF1F2的面積為2.
(1)求橢圓的標準方程;
(2)設(shè)斜率為1的直線與以原點為圓心,半徑為的圓交于A,B兩點,與橢圓C交于C,D兩點,且(),當取得最小值時,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com