【題目】已知橢圓的焦點為,,離心率為,點P為橢圓C上一動點,且的面積最大值為,O為坐標原點.
(1)求橢圓C的方程;
(2)設點,為橢圓C上的兩個動點,當為多少時,點O到直線MN的距離為定值.
【答案】(1);(2)當=0時,點O到直線MN的距離為定值.
【解析】
(1)的面積最大時,是短軸端點,由此可得,再由離心率及可得,從而得橢圓方程;
(2)在直線斜率存在時,設其方程為,現(xiàn)橢圓方程聯(lián)立消元()后應用韋達定理得,注意,一是計算,二是計算原點到直線的距離,兩者比較可得結(jié)論.
(1)因為在橢圓上,當是短軸端點時,到軸距離最大,此時面積最大,所以,由,解得,
所以橢圓方程為.
(2)在時,設直線方程為,原點到此直線的距離為,即,
由,得,
,,
所以,,
,
所以當時,,,為常數(shù).
若,則,,,,,
綜上所述,當=0時,點O到直線MN的距離為定值.
科目:高中數(shù)學 來源: 題型:
【題目】已知分別為橢圓的左、右焦點,為該橢圓的一條垂直于軸的動弦,直線與軸交于點,直線與直線的交點為.
(1)證明:點恒在橢圓上.
(2)設直線與橢圓只有一個公共點,直線與直線相交于點,在平面內(nèi)是否存在定點,使得恒成立?若存在,求出該點坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著經(jīng)濟的發(fā)展,轎車已成為人們上班代步的一種重要工具.現(xiàn)將某人三年以來每周開車從家到公司的時間之和統(tǒng)計如圖所示.
(1)求此人這三年以來每周開車從家到公司的時間之和在(時)內(nèi)的頻率;
(2)求此人這三年以來每周開車從家到公司的時間之和的平均數(shù)(每組取該組的中間值作代表);
(3)以頻率估計概率,記此人在接下來的四周內(nèi)每周開車從家到公司的時間之和在(時)內(nèi)的周數(shù)為,求的分布列以及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù). 設是的導函數(shù).
(Ⅰ)若時,函數(shù)在處的切線經(jīng)過點,求的值;
(Ⅱ)求函數(shù)在區(qū)間上的單調(diào)區(qū)間;
(Ⅲ)若,函數(shù)在區(qū)間內(nèi)有零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線的參數(shù)方程為(為參數(shù)),以為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)求曲線的普通方程與曲線的直角坐標方程;
(Ⅱ)設為曲線上的動點,求點到上點的距離的最小值,并求此時點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率,且直線與橢圓有且只有一個公共點.
(1)求橢圓的標準方程;
(2)設直線與軸交于點,過點的直線與橢圓交于不同的兩點,若,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓:的左右焦點分別為,,橢圓右頂點為,點在圓:上.
(1)求橢圓的標準方程;
(2)點在橢圓上,且位于第四象限,點在圓上,且位于第一象限,已知,求直線的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com