【題目】已知,(其中常數(shù)).
(1)當時,求函數(shù)的極值;
(2)若函數(shù)有兩個零點,求證:.
【答案】(1)有極小值,無極大值;(2)證明見解析.
【解析】
(1)求出a=e的函數(shù)的導數(shù),求出單調區(qū)間,即可求得極值;(2)先證明:當f(x)≥0恒成立時,有 0<a≤e成立.若,則f(x)=ex﹣a(lnx+1)≥0顯然成立;若,運用參數(shù)分離,構造函數(shù)通過求導數(shù),運用單調性,結合函數(shù)零點存在定理,即可得證.
函數(shù)的定義域為,
(1)當時,,,在單調遞增且
當時,,所以在上單調遞減;
當時,,則在上單調遞增,
所以有極小值,無極大值.
(2)先證明:當恒成立時,有成立
若,則顯然成立;
若,由得,令,則,
令,由得在上單調遞增,
又∵,所以在上為負,遞減,在上為正,遞增,∴ ,從而.
因而函數(shù)若有兩個零點,則,所以,
由得,則,
∴在上單調遞增,∴,
∴在上單調遞增∴,則
∴,由得,
則,∴,綜上.
科目:高中數(shù)學 來源: 題型:
【題目】一批用于手電筒的電池,每節(jié)電池的壽命服從正態(tài)分布(壽命單位:小時).考慮到生產成本,電池使用壽命在內是合格產品.
(1)求一節(jié)電池是合格產品的概率(結果四舍五入,保留一位小數(shù));
(2)根據(jù)(1)中的數(shù)據(jù)結果,若質檢部門檢查4節(jié)電池,記抽查電池合格的數(shù)量為,求隨機變量的分布列、數(shù)學期望及方差.
附:若隨機變量服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,過點作傾斜角為的直線,以原點為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為,將曲線上各點的橫坐標伸長為原來的2倍,縱坐標不變,得到曲線,直線與曲線交于不同的兩點.
(1)求直線的參數(shù)方程和曲線的普通方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國在歐洲的某孔子學院為了讓更多的人了解中國傳統(tǒng)文化,在當?shù)嘏e辦了一場由當?shù)厝藚⒓拥闹袊鴤鹘y(tǒng)文化知識大賽,為了了解參加本次大賽參賽人員的成績情況,從參賽的人員中隨機抽取名人員的成績(滿分100分)作為樣本,將所得數(shù)據(jù)進行分析整理后畫出頻率分布直方圖如圖所示,已知抽取的人員中成績在[50,60)內的頻數(shù)為3.
(1)求的值和估計參賽人員的平均成績(保留小數(shù)點后兩位有效數(shù)字);
(2)已知抽取的名參賽人員中,成績在[80,90)和[90,100]女士人數(shù)都為2人,現(xiàn)從成績在[80,90)和[90,100]的抽取的人員中各隨機抽取2人,記這4人中女士的人數(shù)為,求的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三1班共有48人,在“六選三”時,該班共有三個課程組合:理化生、理化歷、史地政其中,選擇理化生的共有24人,選擇理化歷的共有16人,其余人選擇了史地政,現(xiàn)采用分層抽樣的方法從中抽出6人,調查他們每天完成作業(yè)的時間.
(1)應從這三個組合中分別抽取多少人?
(2)若抽出的6人中有4人每天完成六科(含語數(shù)英)作業(yè)所需時間在3小時以上,2人在3小時以內.現(xiàn)從這6人中隨機抽取3人進行座談.
用X表示抽取的3人中每天完成作業(yè)所需時間在3小時以上的人數(shù),求隨機變量X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),.
(1)若,求函數(shù)的單調區(qū)間;
(2)若,且函數(shù)在區(qū)間內有兩個極值點,求實數(shù)a的取值范圍;
(3)求證:對任意的正數(shù)a,都存在實數(shù)t,滿足:對任意的,.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com