分析 利用導(dǎo)數(shù)的定義進行求解即可.
解答 解:由導(dǎo)數(shù)的定義可得$\underset{lim}{△x→0}$$\frac{\sqrt{x+△x}-\sqrt{x}}{△x}$
=$\underset{lim}{△x→0}$$\frac{(\sqrt{x+△x}-\sqrt{x})(\sqrt{x+△x}+\sqrt{x})}{△x•(\sqrt{x+△x}+\sqrt{x})}$
=$\underset{lim}{△x→0}$$\frac{△x}{△x(\sqrt{x+△x}+x)}$
=$\underset{lim}{△x→0}$$\frac{1}{\sqrt{x+△x}+\sqrt{x}}$
=$\frac{1}{2\sqrt{x}}$
點評 本題考查定義法求導(dǎo)數(shù)的值,涉及極限的運算,屬基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若直線l平行于平面α內(nèi)的無數(shù)條直線,則l∥α | |
B. | 若直線a在平面α外,則a∥α | |
C. | 若直線a∥b,b?α,則a∥α | |
D. | 若直線a∥b,b?α,則直線a平行于平面α內(nèi)的無數(shù)條直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com