10.當(dāng)x=0時,函數(shù)f(x)=$\frac{1}{2}$(ex+e-x)取得極小值.

分析 先求導(dǎo),令f′(x)>0求出函數(shù)的增區(qū)間,令f′(x)<0求出函數(shù)的減區(qū)間.

解答 解:函數(shù)f(x)的定義域?yàn)镽,
f(x)=$\frac{1}{2}$(ex+e-x
f′(x)=$\frac{1}{2}$ex-$\frac{1}{2}$e-x
令f′(x)>0得,x>0,
函數(shù)f(x)=$\frac{1}{2}$(ex+e-x)(e為自然對數(shù)的底數(shù))在(0,+∞)上是增函數(shù),
函數(shù)的最小值為:1.此時x=0.
故答案為:0.

點(diǎn)評 考查利用導(dǎo)數(shù)的方法研究函數(shù)的單調(diào)性方法,注意函數(shù)的定義域.屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列有關(guān)命題的敘述,
①若p∨q為真命題,則p∧q為真命題;
②“m>$\frac{1}{2}$”是$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{2m-1}$=1為橢圓的充分必要條件;
③“若x+y=0,則是x,y互為相反數(shù)”的逆命題為真命題;
④命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2-3x=2≠0”.
其中錯誤的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.為了調(diào)查學(xué)生每天零花錢的數(shù)量(錢數(shù)取整數(shù)元),以便引導(dǎo)學(xué)生樹立正確的消費(fèi)觀.樣本容量1000的頻率分布直方圖如圖所示,則樣本數(shù)據(jù)落在[6,14)內(nèi)的頻數(shù)為680.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知F1,F(xiàn)2分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),過F2(2,0)與x軸垂直的直線交橢圓于點(diǎn)M,且|MF2|=3.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)P(0,1),問是否存在直線1與橢圓交于不同的兩點(diǎn)A,B,且AB的垂直平分線恰好過P點(diǎn)?若存在,求出直線l斜率的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在長方體ABCD-A1B1C1D1中,DA=2,DC=3,DD1=4,M,N,E,F(xiàn)分別是棱A1D1,A1B1、,D1C1,B1C1的中點(diǎn).
求證:平面AMN∥平面EFBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.用導(dǎo)數(shù)的定義求函數(shù)y=$\sqrt{x}$的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知雙曲線x2-$\frac{{y}^{2}}{4}$=1的左右焦點(diǎn)分別是F1,F(xiàn)2,過F2的直線交雙曲線右支于A、B兩點(diǎn)且A在x軸上方,證明:$\overrightarrow{{F}_{1}A}$•$\overrightarrow{{F}_{1}B}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)$\overrightarrow{a}$=(10,-4),$\overrightarrow$=(3,1),$\overrightarrow{c}$=(-2,3).
(1)求證:$\overrightarrow$,$\overrightarrow{c}$可以作為表示同一平面內(nèi)的所有向量的一組基底;
(2)用$\overrightarrow$,$\overrightarrow{c}$表示$\overrightarrow{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{6}$,則$\overrightarrow{a}$$•\overrightarrow$=$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案