【題目】已知頂點為原點O的拋物線C1的焦點F與橢圓C2: =1(a>b>0)的右焦點重合,C1與C2在第一和第四象限的交點分別為A、B.
(1)若△AOB是邊長為2 的正三角形,求拋物線C1的方程;
(2)若AF⊥OF,求橢圓C2的離心率e;
(3)點P為橢圓C2上的任一點,若直線AP、BP分別與x軸交于點M(m,0)和N(n,0),證明:mn=a2 .
【答案】
(1)解:設橢圓的右焦點為F(c,0),依題意得拋物線的方程為y2=4cx
∵△AOB是邊長為2 的正三角形,
∴點A的坐標是 ,
代入拋物線的方程y2=4cx解得 ,
故所求拋物線C1的方程為y2=x
(2)解:∵AF⊥OF,∴點A的橫坐標是c
代入橢圓方程解得 ,即點A的坐標是
∵點A在拋物線y2=4cx上,
∴ ,
將b2=a2﹣c2代入上式整理得: ,
即e2+2e﹣1=0,解得
∵0<e<1,故所求橢圓C2的離心率
(3)證明:設P(x1,y1),A(x2,y2),B(x2,﹣y2),
代入橢圓方程得
而直線PA的方程為(x2﹣x1)(y﹣y1)+(x﹣x1)(y1﹣y2)=0
令y=0得
在 中,以﹣y2代換y2得
∴ =
【解析】(1)確定點A的坐標是 ,代入拋物線的方程y2=4cx,求出c,即可求得拋物線C1的方程;(2)若AF⊥OF,可求A的坐標,代入拋物線的方程y2=4cx,結合b2=a2﹣c2 , 即可求橢圓C2的離心率e;(3)利用直線PA、PB的方程,令y=0得m,n的值,即可證明結論.
科目:高中數學 來源: 題型:
【題目】定義:如果函數y=f(x)在定義域內給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)= ,則稱函數y=f(x)是[a,b]上的“平均值函數”,x0而是它的一個均值點. 例如y=|x|是[﹣2,2]上的“平均值函數”,0就是它的均值點.給出以下命題:
①函數f(x)=sinx﹣1是[﹣π,π]上的“平均值函數”;
②若y=f(x)是[a,b]上的“平均值函數”,則它的均值點x0≤ ;
③若函數f(x)=x2+mx﹣1是[﹣1,1]上的“平均值函數”,則實數m∈(﹣2,0);
④若f(x)=lnx是區(qū)間[a,b](b>a≥1)上的“平均值函數”,x0是它的一個均值點,則lnx0< .
其中的真命題有(寫出所有真命題的序號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】要得到函數y= cosx的圖象,只需將函數y= sin(2x+ )的圖象上所有的點的( )
A.橫坐標縮短到原來的 倍(縱坐標不變),再向左平行移動 個單位長度
B.橫坐標縮短到原來的 倍(縱坐標不變),再向右平行移動 個單位長度
C.橫坐標伸長到原來的2倍(縱坐標不變),再向左平行移動 個單位長度
D.橫坐標伸長到原來的2倍(縱坐標不變),再向右平行移動 個單位長度
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓的圓心在軸上,點是圓的上任一點,且當點的坐標為時,到直線距離最大.
(1)求直線被圓截得的弦長;
(2)已知,經過原點,且斜率為的直線與圓交于,兩點.
(Ⅰ)求證:為定值;
(Ⅱ)若,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,以原點為圓心,橢圓的短半軸長為半徑的圓與直線 x﹣ y+12=0相切.
(1)求橢圓C的方程,
(2)設A(﹣4,0),過點R(3,0)作與x軸不重合的直線L交橢圓C于P,Q兩點,連接AP,AQ分別交直線x= 于M,N兩點,若直線MR、NR的斜率分別為k1 , k2 , 試問:k1 k2是否為定值?若是,求出該定值,若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數在定義域內存在實數,使得成立,則稱函數有“飄移點”.
Ⅰ試判斷函數及函數是否有“飄移點”并說明理由;
Ⅱ若函數有“飄移點”,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com