【題目】已知函數(shù)滿足,且在上為增函數(shù),,則不等式的解集為__________.
【答案】
【解析】
由f(﹣x)=﹣f(x),化簡(jiǎn)不等式得.再分x>0和x<0時(shí)兩種情況加以討論,利用函數(shù)的單調(diào)性和f(1)=0,分別解關(guān)于x的不等式得到x的取值范圍,最后綜合可得原不等式的解集.
∵函數(shù)f(x)滿足f(﹣x)=﹣f(x)(x∈R),
∴f(x)﹣f(﹣x)=f(x)+f(x)=2f(x),
因此,不等式等價(jià)于,
化簡(jiǎn)得或,
①當(dāng)x>0時(shí),由于在(0,+∞)上f(x)為增函數(shù)且f(1)=0,
∴由不等式f(x)≤0=f(1),得0<x≤1;
②當(dāng)x<0時(shí),﹣x>0,
不等式f(x)≥0化成﹣f(x)≤0,即f(﹣x)≤0=f(1),
解之得﹣x≤1,即﹣1≤x<0.
綜上所述,原不等式的解集為[﹣1,0)∪(0,1].
故答案為:[﹣1,0)∪(0,1]
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)需要建造一個(gè)容積為8立方米,深度為2米的無(wú)蓋長(zhǎng)方體水池,已知池壁的造價(jià)為每平方米100元,池底造價(jià)為每平方米300元,設(shè)水池底面一邊長(zhǎng)為米,水池總造價(jià)為元,求關(guān)于的函數(shù)關(guān)系式,并求出水池的最低造價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),,均在圓上.
(1)求圓的方程;
(2)若直線與圓相交于、兩點(diǎn),求的長(zhǎng);
(3)設(shè)過點(diǎn)的直線與圓相交于、兩點(diǎn),試問:是否存在直線,使得以為直徑的圓經(jīng)過原點(diǎn)?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體中,點(diǎn)是線段上的動(dòng)點(diǎn),則下列說法錯(cuò)誤的是( )
A. 無(wú)論點(diǎn)在上怎么移動(dòng),異面直線與所成角都不可能是
B. 無(wú)論點(diǎn)在上怎么移動(dòng),都有
C. 當(dāng)點(diǎn)移動(dòng)至中點(diǎn)時(shí),才有與與相交于一點(diǎn),記為點(diǎn),且
D. 當(dāng)點(diǎn)移動(dòng)至中點(diǎn)時(shí),直線與平面所成角最大且為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知頂點(diǎn)為原點(diǎn)O的拋物線C1的焦點(diǎn)F與橢圓C2: =1(a>b>0)的右焦點(diǎn)重合,C1與C2在第一和第四象限的交點(diǎn)分別為A、B.
(1)若△AOB是邊長(zhǎng)為2 的正三角形,求拋物線C1的方程;
(2)若AF⊥OF,求橢圓C2的離心率e;
(3)點(diǎn)P為橢圓C2上的任一點(diǎn),若直線AP、BP分別與x軸交于點(diǎn)M(m,0)和N(n,0),證明:mn=a2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)市場(chǎng)調(diào)查發(fā)現(xiàn),某種產(chǎn)品在投放市場(chǎng)的30天中,其銷售價(jià)格(元)和時(shí)間(天)的關(guān)系如圖所示.
(1)求銷售價(jià)格(元)和時(shí)間(天)的函數(shù)關(guān)系式;
(2)若日銷售量(件)與時(shí)間(天)的函數(shù)關(guān)系式是 ,問該產(chǎn)品投放市場(chǎng)第幾天時(shí),日銷售額(元)最高,且最高為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù) 有以下四個(gè)命題:
①對(duì)于任意的,都有; ②函數(shù)是偶函數(shù);
③若為一個(gè)非零有理數(shù),則對(duì)任意恒成立;
④在圖象上存在三個(gè)點(diǎn),,,使得為等邊三角形.其中正確命題的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,點(diǎn)A在x軸上,點(diǎn)B的坐標(biāo)為(1,0).且點(diǎn)C與點(diǎn)D在函數(shù)f(x)= 的圖象上.若在矩形ABCD內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)取自空白部分的概率等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某商品的進(jìn)貨單價(jià)為1元/件,商戶甲往年以單價(jià)2元/件銷售該商品時(shí),年銷量為1萬(wàn)件.今年擬下調(diào)銷售單價(jià)以提高銷量增加收益.據(jù)估算,若今年的實(shí)際銷售單價(jià)為元/件,則新增的年銷量(萬(wàn)件).
(Ⅰ)寫出今年商戶甲的收益(單位:萬(wàn)元)與的函數(shù)關(guān)系式;
(Ⅱ)商戶甲今年采取降低單價(jià)提高銷量的營(yíng)銷策略,是否能獲得比往年更大的收益(即比往年收益更多)?請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com