【題目】如圖所示,正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為a,M,N分別為A1B和AC上的點(diǎn),A1M=AN= ,則MN與平面BB1C1C的位置關(guān)系為( )
A.相交
B.平行
C.垂直
D.不能確定
【答案】B
【解析】解:作ME⊥AB于E,連接NE,
∵M(jìn)E⊥AB,BB1⊥AB(同一平面內(nèi)),∴ME∥AB,
∴ = = ,
∴ = ,∴NE∥BC,
∵BC平面BB1C1C,NE平面BB1C1C,
∴NE∥平面BB1C1C,同理ME∥平面BB1C1C,
又∵M(jìn)E∩NE=E,∴面MNE∥平面BB1C1C,
∵M(jìn)N平面MNE,∴MN∥平面BB1C1C.
∴MN與平面BB1C1C的位置關(guān)系為平行.
故選:B.
作ME⊥AB于E,連接NE推導(dǎo)出NE∥平面BB1C1C,ME∥平面BB1C1C,從而面MNE∥平面BB1C1C,進(jìn)而MN∥平面BB1C1C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=2017x+sin2017x,g(x)=log2017x+2017x , 則( )
A.對(duì)于任意正實(shí)數(shù)x恒有f(x)≥g(x)
B.存在實(shí)數(shù)x0 , 當(dāng)x>x0時(shí),恒有f(x)>g(x)
C.對(duì)于任意正實(shí)數(shù)x恒有f(x)≤g(x)
D.存在實(shí)數(shù)x0 , 當(dāng)x>x0時(shí),恒有f(x)<g(x)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|﹣|x+1|.
(1)求不等式|f(x)|<1的解集;
(2)若不等式|a|f(x)≥|f(a)|對(duì)任意a∈R恒成立,求實(shí)數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)實(shí)數(shù)x、y滿足2x+y=9.
(1)若|8﹣y|≤x+3,求x的取值范圍;
(2)若x>0,y>0,求證: ≥ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+x2 .
(Ⅰ)求函數(shù)h(x)=f(x)﹣3x的極值;
(Ⅱ)若函數(shù)g(x)=f(x)﹣ax在定義域內(nèi)為增函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義域在R上的偶函數(shù),且在區(qū)間(﹣∞,0)上單調(diào)遞減,求滿足的x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)z1 , z2是復(fù)數(shù),給出下列四個(gè)命題: ①若|z1﹣z2|=0,則 = ②若z1= ,則 =z2
③若|z1|=|z2|,則z1 =z2 ④若|z1|=|z2|,則z12=z22
其中真命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在四棱錐中,底面是矩形,且,,平面,、分別是線段、的中點(diǎn).
(1)證明:
(2)在線段上是否存在點(diǎn),使得∥平面,若存在,確定點(diǎn)的位置;若不存在,說明理由.
(3)若與平面所成的角為,求二面角的余弦值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com