【題目】已知正項數(shù)列的前n項和為,數(shù)列滿足.
(1)求數(shù)列的通項公式;
(2)數(shù)列滿足,它的前n項和為,若存在正整數(shù)n,使不等式成立,求實數(shù)的取值范圍.
【答案】(1),;(2)或
【解析】
(1)由題意可得當時,,從而推出,則,從而可求出;
(2)易知,利用錯位相減法求得,從而有不等式成立,對分奇偶數(shù)討論,令,利用換元法化為二次函數(shù),從而可求出答案.
解:(1),
當時,,或(舍去)
當時,由,得,
兩式相減得:,,
即,∴.
又∵數(shù)列為正項數(shù)列,故,也即,
∴數(shù)列為以1為首項1為公差的等差數(shù)列,
∴,;
(2)易知,則
①,
②,
①②可得:,
故,所以不等式成立,
若n為偶數(shù),則,所以,
設(shè),則在單調(diào)遞減,
故當時,,所以;
若n為奇數(shù),則,所以
設(shè),則在單調(diào)遞增,
故當時,,所以,
綜上所述,的取值范圍或.
科目:高中數(shù)學 來源: 題型:
【題目】在某藝術(shù)團組織的“微視頻展示”活動中,該團體將從微視頻的“點贊量”和“專家評分”兩個角度來進行評優(yōu).若A視頻的“點贊量”和“專家評分”中至少有一項高于B視頻,則稱A視頻不亞于B視頻.已知共有5部微視頻展,如果某微視頻不亞于其他4部視頻,就稱此視頻為優(yōu)秀視頻.那么在這5部微視頻中,最多可能有_______個優(yōu)秀視頻.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為,以原點0為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)若曲線方程中的參數(shù)是,且與有且只有一個公共點,求的普通方程;
(2)已知點,若曲線方程中的參數(shù)是,,且與相交于,兩個不同點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的傾斜角為,且經(jīng)過點.以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足,記點N的軌跡為曲線C.
(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標方程;
(Ⅱ)設(shè)直線與曲線C交于P,Q兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求的單調(diào)區(qū)間;
(2)若對任意,都有成立,求實數(shù)的取值范圍;
(3)若過點可作函數(shù)圖像的三條不同切線,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C經(jīng)過點A(2,-1),和直線x+y=1相切,且圓心在直線y=-2x上.
(1)求圓C的方程;
(2)已知直線l經(jīng)過(2,0)點,并且被圓C截得的弦長為2,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體中,點是棱上的一個動點,平面交棱于點.下列命題正確的為_______________.
①存在點,使得//平面;
②對于任意的點,平面平面;
③存在點,使得平面;
④對于任意的點,四棱錐的體積均不變.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知z是實系數(shù)方程的虛根,記它在直角坐標平面上的對應點為,
(1)若在直線上,求證:在圓:上;
(2)給定圓:(m、,),則存在唯一的線段s滿足:①若在圓C上,則在線段s上;②若是線段s上一點(非端點),則在圓C上、寫出線段s的表達式,并說明理由;
(3)由(2)知線段s與圓C之間確定了一種對應關(guān)系,通過這種對應關(guān)系的研究,填寫表(表中是(1)中圓的對應線段).
線段s與線段的關(guān)系 | m、r的取值或表達式 |
s所在直線平行于所在直線 | |
s所在直線平分線段 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com