【題目】已知函數(shù).
(1)當時,求的單調(diào)區(qū)間;
(2)若對任意,都有成立,求實數(shù)的取值范圍;
(3)若過點可作函數(shù)圖像的三條不同切線,求實數(shù)的取值范圍.
【答案】(1) 單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為和;(2);(3)
【解析】
試題解析:(1)當a=3時,,得
因為,
所以當1<x<2時,,函數(shù)單調(diào)遞增;
當x<1或x>2時,,函數(shù)單調(diào)遞減.
所以函數(shù)的單調(diào)遞增區(qū)間為(1,2),單調(diào)遞減區(qū)間為(-∞,1)和(2,+∞).
(2)由,得,
因為對于任意都有成立,
即對于任意都有成立,
即對于任意都有成立,
令,
要使對任意都有成立,
必須滿足△<0或
即或
所以實數(shù)的取值范圍為(-1,8)
(3)設(shè)點P是函數(shù)圖象上的切點
則過P的切線的斜率為,
切線方程為:
∵在切線上
∴
∵若過點可作函數(shù)圖象的三條不同切線
∴有三個不等的實根,
令,解得
∵
∴
∴實數(shù)的取值范圍
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為方便市民出行,倡導(dǎo)低碳出行.某市公交公司推出利用支付寶和微信掃碼支付乘車活動,活動設(shè)置了一段時間的推廣期,在推廣期內(nèi)采用隨機優(yōu)惠鼓勵市民掃碼支付乘車.該公司某線路公交車隊統(tǒng)計了活動推廣期第一周內(nèi)使用掃碼支付的情況,其中(單位:天)表示活動推出的天次,(單位:十人次)表示當天使用掃碼支付的人次,整理后得到如圖所示的統(tǒng)計表1和散點圖.
表1:
x | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 | 第6天 | 第7天 |
y | 7 | 12 | 20 | 33 | 54 | 90 | 148 |
(1)由散點圖分析后,可用作為該線路公交車在活動推廣期使用掃碼支付的人次關(guān)于活動推出天次的回歸方程,根據(jù)表2的數(shù)據(jù),求此回歸方程,并預(yù)報第8天使用掃碼支付的人次(精確到整數(shù)).
表2:
|
|
| img src="http://thumb.1010pic.com/questionBank/Upload/2019/08/08/08/88254471/SYS201908080801220877999013_ST/SYS201908080801220877999013_ST.008.png" width="67" height="40" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" /> | ||
4 | 52 | 3.5 | 140 | 2069 | 112 |
表中,.
(2)推廣期結(jié)束后,該車隊對此期間乘客的支付情況進行統(tǒng)計,結(jié)果如表3.
表3:
支付方式 | 現(xiàn)金 | 乘車卡 | 掃碼 |
頻率 | 10% | 60% | 30% |
優(yōu)惠方式 | 無優(yōu)惠 | 按7折支付 | 隨機優(yōu)惠(見下面統(tǒng)計結(jié)果) |
統(tǒng)計結(jié)果顯示,掃碼支付中享受5折支付的頻率為,享受7折支付的頻率為,享受9折支付的頻率為.已知該線路公交車票價為1元,將上述頻率作為相應(yīng)事件發(fā)生的概率,記隨機變量為在活動期間該線路公交車搭載乘客一次的收入(單位:元),求的分布列和期望.
參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為參考數(shù)據(jù):,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】短道速滑隊組織6名隊員(包括賽前系列賽積分最靠前的甲乙丙三名隊員在內(nèi))參加冬奧會選拔賽,記“甲得第一名”為,“乙得第二名”為,“丙得第三名”為,若是真命題,是假命題,是真命題,則選拔賽的結(jié)果為( )
A.甲得第一名、乙得第三名、丙得第二名
B.甲沒得第一名、乙沒得第二名、丙得第三名
C.甲得第一名、乙沒得第二名、丙得第三名
D.甲得第二名、乙得第一名、丙得第三名
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若曲線與在它們的交點處有相同的切線,求實數(shù)a,b的值;
(2)當時,若函數(shù)在區(qū)間內(nèi)恰有兩個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列的前n項和為,數(shù)列滿足.
(1)求數(shù)列的通項公式;
(2)數(shù)列滿足,它的前n項和為,若存在正整數(shù)n,使不等式成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線x2=2py(p>0)的焦點,斜率為的直線交拋物線于A(x1,y1),B(x2,y2)(x1<x2)兩點,且|AB|=9.
(1)求該拋物線的方程;
(2)O為坐標原點,C為拋物線上一點,若,求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)若不等式在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系.已知曲線C的極坐標方程為ρ(1-cos2θ)=8cosθ,直線ρcosθ=1與曲線C相交于M,N兩點,直線l過定點P(2,0)且傾斜角為α,l交曲線C于A,B兩點.
(1)把曲線C化成直角坐標方程,并求|MN|的值;
(2)若|PA|,|MN|,|PB|成等比數(shù)列,求直線l的傾斜角α.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com