【題目】如圖,在正方體中,點(diǎn)是棱上的一個(gè)動(dòng)點(diǎn),平面交棱于點(diǎn).下列命題正確的為_______________.
①存在點(diǎn),使得//平面;
②對(duì)于任意的點(diǎn),平面平面;
③存在點(diǎn),使得平面;
④對(duì)于任意的點(diǎn),四棱錐的體積均不變.
【答案】①②④
【解析】
根據(jù)線面平行和線面垂直的判定定理,以及面面垂直的判定定理和性質(zhì)分別進(jìn)行判斷即可.
①當(dāng)為棱上的一中點(diǎn)時(shí),此時(shí)也為棱上的一個(gè)中點(diǎn),此時(shí)//,滿足//平面,故①正確;
②連結(jié),則平面,因?yàn)?/span>平面,所以平面平面,故②正確;
③平面,不可能存在點(diǎn),使得平面,故③錯(cuò)誤;
④四棱錐的體積等于,設(shè)正方體的棱長(zhǎng)為1.
∵無論、在何點(diǎn),三角形的面積為為定值,三棱錐的高,保持不變,三角形的面積為為定值,三棱錐的高為,保持不變.
∴四棱錐的體積為定值,故④正確.
故答案為①②④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲,乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,其質(zhì)量按測(cè)試指標(biāo)劃分:指標(biāo)大于或等于100為優(yōu)品,大于等于90且小于100為合格品,小于90為次品,現(xiàn)隨機(jī)抽取這兩臺(tái)車床生產(chǎn)的零件各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:
測(cè)試指標(biāo) | |||||
機(jī)床甲 | 8 | 12 | 40 | 32 | 8 |
機(jī)床乙 | 7 | 18 | 40 | 29 | 6 |
(1)試分別估計(jì)甲機(jī)床、乙機(jī)床生產(chǎn)的零件為優(yōu)品的概率;
(2)甲機(jī)床生產(chǎn)一件零件,若是優(yōu)品可盈利160元,合格品可盈利100元,次品則虧損20元;假設(shè)甲機(jī)床某天生產(chǎn)50件零件,請(qǐng)估計(jì)甲機(jī)床該天的日利潤(rùn)(單位:元);
(3)從甲、乙機(jī)床生產(chǎn)的零件指標(biāo)在內(nèi)的零件中,采用分層抽樣的方法抽取5件,從這5件中任選2件進(jìn)行質(zhì)量分析,求這2件都是乙機(jī)床生產(chǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知長(zhǎng)方體AC1中,AD=AB=2,AA1=1,E為D1C1的中點(diǎn),如圖所示.
(Ⅰ)在所給圖中畫出平面ABD1與平面B1EC的交線(不必說明理由);
(Ⅱ)證明:BD1∥平面B1EC;
(Ⅲ)求平面ABD1與平面B1EC所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣1)=0,當(dāng)x>0時(shí),xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱柱A1B1C1﹣ABC中,側(cè)棱與底面垂直,AB=BC=AA1 , ∠ABC=90°,M是BC的中點(diǎn).
(1)求證:A1B∥平面AMC1;
(2)求平面A1B1M與平面AMC1所成角的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣ |+|x+m|(m>0)
(1)證明:f(x)≥4;
(2)若f(2)>5,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為1538,則判斷框內(nèi)可填入的條件為( )
A.n>6?
B.n>7?
C.n>8?
D.n>9?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(分)已知橢圓的左焦點(diǎn)為,過的直線與交于、兩點(diǎn).
()求橢圓的離心率.
()當(dāng)直線與軸垂直時(shí),求線段的長(zhǎng).
()設(shè)線段的中點(diǎn)為,為坐標(biāo)原點(diǎn),直線交橢圓交于、兩點(diǎn),是否存在直線使得?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心在軸上的圓與直線切于點(diǎn).圓: .
(1)求圓的標(biāo)準(zhǔn)方程;
(2)已知,圓與軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的右側(cè)).過點(diǎn)任作一條傾斜角不為0的直線與圓相交于兩點(diǎn).問:是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù)的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com