【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,點(diǎn)E,F(xiàn)分別在A1B1 , D1C1上,A1E=D1F=4.過E,F(xiàn)的平面α與此長方體的面相交,交線圍成一個(gè)正方形

(1)在圖中畫出這個(gè)正方形(不必說出畫法和理由)
(2)求平面α把該長方體分成的兩部分體積的比值.

【答案】
(1)解:交線圍成的正方形EFGH如圖所示;
(2)解:作EM⊥AB,垂足為M,則AM=A1E=4,EB1=12,EM=AA1=8.

因?yàn)镋FGH為正方形,所以EH=EF=BC=10,

于是MH= =6,AH=10,HB=6.

因?yàn)殚L方體被平面α分成兩個(gè)高為10的直棱柱,

所以其體積的比值為


【解析】(1)利用平面與平面平行的性質(zhì),可在圖中畫出這個(gè)正方形;(2)求出MH= =6,AH=10,HB=6,即可求平面a把該長方體分成的兩部分體積的比值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平面的基本性質(zhì)及推論的相關(guān)知識(shí),掌握如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi);過不在一條直線上的三點(diǎn),有且只有一個(gè)平面;如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】連續(xù)拋擲同一顆均勻的骰子,令第i次得到的點(diǎn)數(shù)為ai , 若存在正整數(shù)k,使a1+a2+…+ak=6,則稱k為你的幸運(yùn)數(shù)字.
(1)求你的幸運(yùn)數(shù)字為3的概率;
(2)若k=1,則你的得分為5分;若k=2,則你的得分為3分;若k=3,則你的得分為1分;若拋擲三次還沒找到你的幸運(yùn)數(shù)字則記0分,求得分X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合M={1,2,3},N={1,2,3,4},定義函數(shù)f:M→N.若點(diǎn)A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圓圓心為D,且 ,則滿足條件的函數(shù)f(x)有(
A.6個(gè)
B.10個(gè)
C.12個(gè)
D.16個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著人們對(duì)環(huán)境關(guān)注度的提高,綠色低碳出行越來越受到市民重視. 為此貴陽市建立了公共自行車服務(wù)系統(tǒng),市民憑本人二代身份證到自行車服務(wù)中心辦理誠信借車卡借車,初次辦卡時(shí)卡內(nèi)預(yù)先贈(zèng)送20積分,當(dāng)積分為0時(shí),借車卡將自動(dòng)鎖定,限制借車,用戶應(yīng)持卡到公共自行車服務(wù)中心以1元購1個(gè)積分的形式再次激活該卡,為了鼓勵(lì)市民租用公共自行車出行,同時(shí)督促市民盡快還車,方便更多的市民使用,公共自行車按每車每次的租用時(shí)間進(jìn)行扣分收費(fèi),具體扣分標(biāo)準(zhǔn)如下:

①租用時(shí)間不超過1小時(shí),免費(fèi);

②租用時(shí)間為1小時(shí)以上且不超過2小時(shí),扣1分;

③租用時(shí)間為2小時(shí)以上且不超過3小時(shí),扣2分;

④租用時(shí)間超過3小時(shí),按每小時(shí)扣2分收費(fèi)(不足1小時(shí)的部分按1小時(shí)計(jì)算).

甲、乙兩人獨(dú)立出行,各租用公共自行車一次,兩人租車時(shí)間都不會(huì)超過3小時(shí),設(shè)甲、乙租用時(shí)間不超過1小時(shí)的概率分別是0.4和0.5;租用時(shí)間為1小時(shí)以上且不超過2小時(shí)的概率分別是0.4和0.3.

(1)求甲、乙兩人所扣積分相同的概率;

(2)設(shè)甲、乙兩人所扣積分之和為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,M是正方體ABCD﹣A1B1C1D1的棱DD1的中點(diǎn),給出下列命題
①過M點(diǎn)有且只有一條直線與直線AB、B1C1都相交;
②過M點(diǎn)有且只有一條直線與直線AB、B1C1都垂直;
③過M點(diǎn)有且只有一個(gè)平面與直線AB、B1C1都相交;
④過M點(diǎn)有且只有一個(gè)平面與直線AB、B1C1都平行.
其中真命題是(

A.②③④
B.①③④
C.①②④
D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)|xa|

(1)若不等式f(x)3的解集為{x|1x5},求實(shí)數(shù)a的值;

(2)(1)的條件下,f(x)f(x5)m對(duì)一切實(shí)數(shù)x恒成立求實(shí)數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,矩形ABCD的邊AB=m,BC=4,PA⊥平面ABCD,PA=3,現(xiàn)有數(shù)據(jù):
;②m=3;③m=4;④ .若在BC邊上存在點(diǎn)Q(Q不在端點(diǎn)B、C處),使PQ⊥QD,則m可以。

A.①②
B.①②③
C.②④
D.①

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)試說明的圖象由函數(shù)的圖象經(jīng)過怎樣的變化得到?并求的單調(diào)區(qū)間;

(2)若函數(shù)的圖象關(guān)于直線對(duì)稱,當(dāng)時(shí),求函數(shù)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】實(shí)數(shù)m取什么數(shù)值時(shí),復(fù)數(shù)z=m2﹣1+(m2﹣m﹣2)i分別是:
(1)實(shí)數(shù)?
(2)虛數(shù)?
(3)純虛數(shù)?
(4)表示復(fù)數(shù)z的點(diǎn)在復(fù)平面的第四象限?

查看答案和解析>>

同步練習(xí)冊(cè)答案