【題目】已知函數(shù)

(Ⅰ)若,求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

(Ⅱ)求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)設(shè)函數(shù).若對(duì)于任意,都有成立,求實(shí)數(shù)的取值范圍.

【答案】(1) ;(2)當(dāng)時(shí),函數(shù)的增區(qū)間為 ,減區(qū)間為;

當(dāng)時(shí),函數(shù)的增區(qū)間為, ,減區(qū)間為;

當(dāng)時(shí),函數(shù)的增區(qū)間為,無(wú)減區(qū)間;(3).

【解析】試題分析:(Ⅰ) 求出,可得切線(xiàn)斜率,根據(jù)點(diǎn)斜式可得切線(xiàn)方程;(Ⅱ)討論三種情況,分別令得增區(qū)間, 得減區(qū)間; (Ⅲ)對(duì)于任意,都有成立等價(jià)于恒成立,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出其最大值,進(jìn)而可得結(jié)果.

試題解析:(函數(shù)的定義域?yàn)?/span>.

當(dāng)時(shí), , ,

,

所以曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為.

(Ⅱ)因?yàn)?/span>

,即,解得.

(1)當(dāng),即時(shí),

,得;

,得.

所以函數(shù)的增區(qū)間為, ,減區(qū)間為.

(2)當(dāng),即時(shí),

,得

,得.

所以函數(shù)的增區(qū)間為, ,減區(qū)間為.

(3)當(dāng),即時(shí), 上恒成立,

所以函數(shù)的增區(qū)間為,無(wú)減區(qū)間.

綜上所述:

當(dāng)時(shí),函數(shù)的增區(qū)間為, ,減區(qū)間為;

當(dāng)時(shí),函數(shù)的增區(qū)間為 ,減區(qū)間為;

當(dāng)時(shí),函數(shù)的增區(qū)間為,無(wú)減區(qū)間.

(Ⅲ)因?yàn)閷?duì)于任意,都有成立,

,等價(jià)于.

,則當(dāng)時(shí), .

.

因?yàn)楫?dāng)時(shí), ,所以上單調(diào)遞增.

所以.

所以.

所以.

【方法點(diǎn)晴】本題主要考查利用導(dǎo)數(shù)求曲線(xiàn)切線(xiàn)以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、不等式恒成立問(wèn)題,屬于難題.求曲線(xiàn)切線(xiàn)方程的一般步驟是:(1)求出處的導(dǎo)數(shù),即在點(diǎn) 出的切線(xiàn)斜率(當(dāng)曲線(xiàn)處的切線(xiàn)與軸平行時(shí),在 處導(dǎo)數(shù)不存在,切線(xiàn)方程為);(2)由點(diǎn)斜式求得切線(xiàn)方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,平面四邊形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,AD⊥ED,AF∥DE,AB∥CD,CD=2AB=2AD=2ED=xAF.
(Ⅰ)若四點(diǎn)F、B、C、E共面,AB=a,求x的值;
(Ⅱ)求證:平面CBE⊥平面EDB;
(Ⅲ)當(dāng)x=2時(shí),求二面角F﹣EB﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=2x﹣cosx,{an}是公差為 的等差數(shù)列,f(a1)+f(a2)+…+f(a5)=5π,則[f(a3)]2﹣a1a5=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100 個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:kg).其頻率分布直方圖如下:

(1)設(shè)兩種養(yǎng)殖方法的箱產(chǎn)量相互獨(dú)立,記A表示事件:“舊養(yǎng)殖法的箱產(chǎn)量低于50kg,新養(yǎng)殖法的箱產(chǎn)量不低于50kg”,估計(jì)A的概率;

(2)填寫(xiě)下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):

箱產(chǎn)量<50kg

箱產(chǎn)量≥50kg

舊養(yǎng)殖法

新養(yǎng)殖法

(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,求新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計(jì)值(精確到0.01).

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用數(shù)學(xué)歸納法證明:12﹣22+32﹣42+…+(﹣1)n1n2=(﹣1)n1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若a,b在區(qū)間(0,1)內(nèi),則橢圓 =1(a>b>0)與直線(xiàn)l:x+y=1在第一象限內(nèi)有兩個(gè)不同的交點(diǎn)的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知| |=4,| |=8,| |=4
(1)計(jì)算:① ,②|4 ﹣2 |
(2)若( +2 )⊥(k ),求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:萬(wàn)元)對(duì)年銷(xiāo)售量(單位:噸)和年利潤(rùn)(單位:萬(wàn)元)的影響。對(duì)近六年的年宣傳費(fèi)和年銷(xiāo)售量的數(shù)據(jù)作了初步統(tǒng)計(jì),得到如下數(shù)據(jù):

年份

2011

2012

2013

2014

2015

2016

年宣傳費(fèi)(萬(wàn)元)

38

48

58

68

78

88

年銷(xiāo)售量(噸)

168

188

207

224

240

255

經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(fèi)(萬(wàn)元)與年銷(xiāo)售量(噸)之間近似滿(mǎn)足關(guān)系式。對(duì)上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如下表:

753

246

183

1014

1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;

2)規(guī)定當(dāng)產(chǎn)品的年銷(xiāo)售量(噸)與年宣傳費(fèi)(萬(wàn)元)的比值在區(qū)間內(nèi)時(shí)認(rèn)為該年效益良好,F(xiàn)從這6年中任選3年,記其中選到效益良好年的數(shù)量為,試求隨機(jī)變量的分布列和期望。(其中為自然對(duì)數(shù)的底數(shù),

附:對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)中的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

同步練習(xí)冊(cè)答案