已知方程ax2+2x+c=0(a、c∈N+)有實(shí)數(shù)根.
(1)求f(x)=ax2+2x+c的解析式;
(2)若x∈[-2,2],求函數(shù)f(x)的值域.
考點(diǎn):函數(shù)解析式的求解及常用方法,函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由題意得到△=4-4ac≥0,即ac≤1,再根據(jù)a、c∈N+求出ac的值,代入即可.
(2)利用配方法求最值,問(wèn)題得以解決.
解答: 解:(1)∵方程ax2+2x+c=0(a、c∈N+)有實(shí)數(shù)根.
∴△=4-4ac≥0,
∴ac≤1,
∴a=c=1,
∴f(x)=x2+2x+1,
(2)∵f(x)=x2+2x+1=(x+1)2
∴當(dāng)x=-1∈[-2,2]有最小值,最小值為0,
當(dāng)x=2有最大值,最大值為9,
∴函數(shù)f(x)的值域?yàn)閇0,9]
點(diǎn)評(píng):本題主要考查了函數(shù)解析式的求法和函數(shù)值域的求法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
3
+
y2
b2
=1(b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,直線AB過(guò)右焦點(diǎn)F2,和橢圓C交于A,B兩點(diǎn),且滿足
AF1
=2
F2B
,∠F1AB=90°,則橢圓C的離心率為(  )
A、
3
3
B、
5
3
C、
30
6
D、
6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖:橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
1
2
,橢圓上點(diǎn)到直線l:x=4的最短距離為2.
(1)求橢圓C的方程;
(2)AB是經(jīng)過(guò)右焦點(diǎn)F的任一弦,P是直線l上的任意點(diǎn),記PA,PF,PB的斜率分別為k1,k2,k3.問(wèn):是否存在常數(shù)λ,使得k1+k3=λk2?若存在,求λ的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1
2
(ax+a-x)(a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)(2,
41
9
).
(1)求函數(shù)f(x)的解析式; 
(2)若函數(shù)f(x)的值域?yàn)閇1,
5
3
],試確定x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了增強(qiáng)中學(xué)生的法律意識(shí),某中學(xué)高三年級(jí)組織了普法知識(shí)競(jìng)賽.并隨機(jī)抽取了A、B兩個(gè)班中各5名學(xué)生的成績(jī),成績(jī)?nèi)缦卤硭荆?br />
A班8788919193
B班8589919293
(1)根據(jù)表中的數(shù)據(jù),分別求出A、B兩個(gè)班成績(jī)的平均數(shù)和方差,并判斷對(duì)法律知識(shí)的掌握哪個(gè)班更為穩(wěn)定?
(2)用簡(jiǎn)單隨機(jī)抽樣方法從B班5名學(xué)生中抽取2名,他們的成績(jī)組成一個(gè)樣本,求抽取的2名學(xué)生的分?jǐn)?shù)差值至少是4分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
4
+
y2
3
=1的長(zhǎng)軸為線段AB,點(diǎn)M是橢圓上不同于A,B的任意一點(diǎn),
(1)設(shè)直線MA,MB的斜率分別為k1,k2,求證:k1k2為定值;
(2)若直線MA,MB與直線x=3分別相交于C,D兩點(diǎn),求證:以CD為直徑的圓過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|a≤x≤a+3},B={x|x<-1或x>5},若∁RB?A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.
(1)若A⊆B,求a;
(2)若B⊆A,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿足約束條件 
x-y+2≤0
x≥1
x+y-7≤0
,求
y
x
的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案