【題目】已知數(shù)列的前項和為,且.
(1)求數(shù)列的通項公式;
(2)若,求數(shù)列的前項和.
【答案】(1);(2).
【解析】分析:(1)由,可得,兩式相減可化為,可得數(shù)列是首項為,公比為的等比數(shù)列,從而可得結(jié)果;(2)由(1)可得.利用錯位相減法,結(jié)合等比數(shù)列的求和公式可得數(shù)列的前項和.
詳解:(1)∵2Sn+3=3an, ①
∴2Sn-1+3=3an-1, (n≥2) ②
①-②得2Sn-2Sn-1=3an-3an-1=2an,
則=3 (n≥2),
在①式中,令n=1,得a1=3.
∴數(shù)列{an}是首項為3,公比為3的等比數(shù)列,
∴an=3n.
(2)bn=an·log3an+2=3n·log33n+2=(n+2)·3n.
所以Tn=3·31+4·32+5·33+…+(n+1)·3n-1+(n+2)·3n, ①
則 3Tn= 3·32+4·33+…+n·3n-1+(n+1)·3n+(n+2)·3n+1, ②
①-②得,
-2Tn=9+1 (32+33+…+3n-1+3n)-(n+2)·3n+1,
=9+-(n+2)·3n+1
=-×3n+1.
所以Tn=×3n+1-.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十八屆五中全會公報指出:努力促進(jìn)人口均衡發(fā)展,堅持計劃生育的基本國策,完善人口發(fā)展戰(zhàn)略,全面實施一對夫婦可生育兩個孩子的政策。提高生殖健康、婦幼保健、托幼等公共服務(wù)水平。為了解適齡公務(wù)員對放開生育二胎政策的態(tài)度,某部門隨機(jī)調(diào)查了200位30到40歲的公務(wù)員,得到情況如下表:
(Ⅰ)是否有99%以上的把握認(rèn)為“生二胎與性別有關(guān)”,并說明理由;
(Ⅱ)將頻率看作概率,現(xiàn)從社會上隨機(jī)抽取甲、乙、丙3位30到40 歲的男公務(wù)員,求這三人中至少有一人要生二胎的概率.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的焦點在x軸上,焦距為,實軸長為2
(1)求雙曲線的標(biāo)準(zhǔn)方程與漸近線方程。
(2)若點 在該雙曲線上運(yùn)動,且, ,求以 , 為相鄰兩邊的平行四邊形 的頂點 的軌跡.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將五個1,五個2,五個3,五個4,五個5共25個數(shù)填入一個5行5列的表格內(nèi)(每格填入一個數(shù)),使得同一行中任何兩數(shù)之差的絕對值不超過2,考查每行中五個數(shù)之和,記這五個和的最小值為,則的最大值為( )
A. B. 9 C. 10 D. 11
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個袋中裝有個形狀大小完全相同的小球,球的編號分別為,,,,,.
(Ⅰ)若從袋中每次隨機(jī)抽取個球,有放回的抽取次,求取出的兩個球編號之和為的概率.
(Ⅱ)若從袋中每次隨機(jī)抽取個球,有放回的抽取次,求恰有次抽到號球的概率.
(Ⅲ)若一次從袋中隨機(jī)抽取個球,記球的最大編號為,求隨機(jī)變量的分布列.
(Ⅳ)若從袋中每次隨機(jī)抽取個球,有放回的抽取次,記球的最大編號為,求隨機(jī)變量的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線:與軸相交于點,點坐標(biāo)為,過點作直線的垂線,交直線于點.記過、、三點的圓為圓.
(1)求圓的方程;
(2)求過點與圓相交所得弦長為8的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某縣城出租車的收費標(biāo)準(zhǔn)是:起步價是元(乘車不超過千米);行駛千米后,每千米車費1.2元;行駛千米后,每千米車費1.8元.
(1)寫出車費與路程的關(guān)系式;
(2)一顧客計劃行程千米,為了省錢,他設(shè)計了三種乘車方案:
①不換車:乘一輛出租車行千米;
②分兩段乘車:先乘一輛車行千米,換乘另一輛車再行千米;
③分三段乘車:每乘千米換一次車.
問哪一種方案最省錢.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com