【題目】已知拋物線C:y2=4x和直線l:x=-1.
(1)若曲線C上存在一點(diǎn)Q,它到l的距離與到坐標(biāo)原點(diǎn)O的距離相等,求Q點(diǎn)的坐標(biāo);
(2)過直線l上任一點(diǎn)P作拋物線的兩條切線,切點(diǎn)記為A,B,求證:直線AB過定點(diǎn).
【答案】(1) ;(2)證明見解析.
【解析】試題分析:(1)設(shè)Q(x,y),則(x+1)2=x2+y2,又y2=4x,解得Q;(2)設(shè)點(diǎn)(-1,t)的直線方程為y-t=k(x+1),聯(lián)立y2=4x,則Δ=0,得k2+kt-1=0,則切點(diǎn)分別為A,B,所以A,B,F三點(diǎn)共線,AB過點(diǎn)F(1,0)。
試題解析:
(1)設(shè)Q(x,y),則(x+1)2=x2+y2,即y2=2x+1,
由解得Q.
(2)設(shè)過點(diǎn)(-1,t)的直線方程為y-t=k(x+1)(k≠0),代入y2=4x,得ky2-4y+4t+4k=0,
由Δ=0,得k2+kt-1=0,
特別地,當(dāng)t=0時(shí),k=±1,切點(diǎn)為A(1,2),B(1,-2),顯然AB過定點(diǎn)F(1,0).
一般地方程k2+kt-1=0有兩個(gè)根,
∴k1+k2=-t,k1k2=-1,
∴兩切點(diǎn)分別為A,B,
∴=,=,
又-=2=0,
∴與共線,又與有共同的起點(diǎn)F,
∴A,B,F三點(diǎn)共線,∴AB過點(diǎn)F(1,0),
綜上,直線AB過定點(diǎn)F(1,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
(1)當(dāng)時(shí),求函數(shù)在上的值域;
(2)若函數(shù)在上的最小值為3,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某大型水上樂園內(nèi)有一塊矩形場地米, 米,以為直徑的半圓和半圓(半圓在矩形內(nèi)部)為兩個(gè)半圓形水上主題樂園, 都建有圍墻,游客只能從線段處進(jìn)出該主題樂園.為了進(jìn)一步提高經(jīng)濟(jì)效益,水上樂園管理部門決定沿著修建不銹鋼護(hù)欄,沿著線段修建該主題樂園大門并設(shè)置檢票口,其中分別為上的動(dòng)點(diǎn), ,且線段與線段在圓心和連線的同側(cè).已知弧線部分的修建費(fèi)用為元/米,直線部門的平均修建費(fèi)用為元/米.
(1)若米,則檢票等候區(qū)域(其中陰影部分)面積為多少平方米?
(2)試確定點(diǎn)的位置,使得修建費(fèi)用最低.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x+ |+|x﹣2m|(m>0). (Ⅰ)求證:f(x)≥8恒成立;
(Ⅱ)求使得不等式f(1)>10成立的實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正△ABC三個(gè)頂點(diǎn)都在半徑為2的球面上,球心O到平面ABC的距離為1,點(diǎn)E是線段AB的中點(diǎn),過點(diǎn)E作球O的截面,則截面面積的最小值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,,,.
(1)證明:點(diǎn)在底面上的射影必在直線上;
(2)若二面角的大小為,,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】參與舒城中學(xué)數(shù)學(xué)選修課的同學(xué)對(duì)某公司的一種產(chǎn)品銷量與價(jià)格進(jìn)行了統(tǒng)計(jì),得到如下數(shù)據(jù)和散點(diǎn)圖.
定價(jià)x(元/千克) | 10 | 20 | 30 | 40 | 50 | 60 |
年銷量y(千克) | 1150 | 643 | 424 | 262 | 165 | 86 |
z=2 ln y | 14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
參考數(shù)據(jù):
,
.
(1)根據(jù)散點(diǎn)圖判斷y與x,z與x哪一對(duì)具有較強(qiáng)的線性相關(guān)性(給出判斷即可,不必說明理由)?
(2)根據(jù)(1)的判斷結(jié)果及數(shù)據(jù),建立y關(guān)于x的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字).
(3)當(dāng)定價(jià)為150元/千克時(shí),試估計(jì)年銷量.
附:對(duì)于一組數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3),…,(xn,yn),其回歸直線x+的斜率和截距的最
小二乘估計(jì)分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某圓的極坐標(biāo)方程為,求
(1)圓的普通方程和參數(shù)方程;
(2)圓上所有點(diǎn)中的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某經(jīng)銷商計(jì)劃銷售一款新型的空氣凈化器,經(jīng)市場調(diào)研發(fā)現(xiàn)以下規(guī)律:當(dāng)每臺(tái)凈化器的利潤為 x (單位:元, x 0 )時(shí),銷售量 q(x) (單位:百臺(tái))與 x 的關(guān)系滿足:若 x 不超過 20 , 則 ;若 x 大于或等于180 ,則銷售量為零;當(dāng) 20 ≤ x ≤180 時(shí),( a , b 為實(shí)常數(shù)).
(Ⅰ)求函數(shù) q(x) 的表達(dá)式;
(Ⅱ)當(dāng) x 為多少時(shí),總利潤(單位:元)取得最大值,并求出該最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com