【題目】甲、乙、丙三人投籃的命中率各不相同,其中乙的命中率是甲的2倍,丙的命中率等于甲與乙的命中率之和.若甲與乙各投籃一次,每人投籃相互獨(dú)立,則他們都命中的概率為0.18.
(1)求甲、乙、丙三人投籃的命中率;
(2)現(xiàn)要求甲、乙、丙三人各投籃一次,假設(shè)每人投籃相互獨(dú)立,記三人命中總次數(shù)為,求的分布列及數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓:中,,,,的面積為1,.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓上一點(diǎn),、是橢圓的左右兩個(gè)焦點(diǎn),直線、分別交于、,是否存在點(diǎn),使,若存在,求出點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程及直線的普通方程;
(2)設(shè)直線與曲線交于,兩點(diǎn)(點(diǎn)在點(diǎn)左邊)與直線交于點(diǎn).求和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】保險(xiǎn)公司對(duì)一個(gè)擁有20000人的企業(yè)推出一款意外險(xiǎn)產(chǎn)品,每年每位職工只要交少量保費(fèi),發(fā)生意外后可一次性獲得若干賠償金,保險(xiǎn)公司把企業(yè)的所有崗位共分為三類工種,從事這三類工種的人數(shù)分別為12000,6000,2000,由歷史數(shù)據(jù)統(tǒng)計(jì)出三類工種的賠付頻率如下表(并以此估計(jì)賠付概率):
已知三類工種職工每人每年需交的保費(fèi)分別為25元25元40元,出險(xiǎn)后的賠償金額分別為100萬元100萬元50萬元,保險(xiǎn)公司在開展此項(xiàng)業(yè)務(wù)過程中的固定支出為每年10萬元.
(1)設(shè)A類工種職工的每份保單保險(xiǎn)公司的收益為隨機(jī)變量X(元),求X的數(shù)學(xué)期望;
(2)若該公司全員參加保險(xiǎn),求保險(xiǎn)公司該業(yè)務(wù)所獲利潤(rùn)的期望值;
(3)現(xiàn)有如下兩個(gè)方案供企業(yè)選擇:
方案1:企業(yè)不與保險(xiǎn)公司合作,職工不交保險(xiǎn),若出意外,企業(yè)自行拿出與保險(xiǎn)公司提供的等額賠償金賠付給出意外職工,且企業(yè)開展這項(xiàng)工作每年還需另外固定支出12萬元;
方案2:企業(yè)與保險(xiǎn)公司合作,企業(yè)負(fù)責(zé)職工保費(fèi)的70%,職工個(gè)人負(fù)責(zé)保費(fèi)的30%,出險(xiǎn)后賠償金由保險(xiǎn)公司賠付,企業(yè)無額外專項(xiàng)開支.
請(qǐng)根據(jù)企業(yè)成本差異給出選擇合適方案的建議.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2021年開始,我省將試行“3+1+2“的普通高考新模式,即除語文、數(shù)學(xué)、外語3門必選科目外,考生再從物理、歷史中選1門,從化學(xué)、生物、地理、政治中選2門作為選考科目.為了幫助學(xué)生合理選科,某中學(xué)將高一每個(gè)學(xué)生的六門科目綜合成績(jī)按比例均縮放成5分制,繪制成雷達(dá)圖.甲同學(xué)的成績(jī)雷達(dá)圖如圖所示,下面敘述一定不正確的是( )
A.甲的物理成績(jī)領(lǐng)先年級(jí)平均分最多
B.甲有2個(gè)科目的成績(jī)低于年級(jí)平均分
C.甲的成績(jī)從高到低的前3個(gè)科目依次是地理、化學(xué)、歷史
D.對(duì)甲而言,物理、化學(xué)、地理是比較理想的一種選科結(jié)果
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,直線與拋物線交于兩點(diǎn).
(1)若過點(diǎn),且,求的斜率;
(2)若,且的斜率為,當(dāng)時(shí),求在軸上的截距的取值范圍(用表示),并證明的平分線始終與軸平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)[選修4-5:不等式選講]
已知函數(shù)=|x-a|+(a≠0)
(1)若不等式-≤1恒成立,求實(shí)數(shù)m的最大值;
(2)當(dāng)a<時(shí),函數(shù)g(x)=+|2x-1|有零點(diǎn),求實(shí)數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,已知,,,.是線段的中點(diǎn).
(1)求直線與平面所成角的正弦值;
(2)求二面角的大小的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com